The physiology and biotechnology of dark fermentative biohydrogen production

被引:34
|
作者
Ergal, Ipek [1 ]
Fuchs, Werner [2 ]
Hasibar, Benedikt [2 ]
Thallinger, Barbara [3 ]
Bochmann, Guenther [2 ]
Rittmann, S. K. -M. R. [1 ]
机构
[1] Univ Wien, Dept Ecogen & Syst Biol, Archaea Biol & Ecogen Div, Archaea Physiol & Biotechnol Grp, Althanstr 14, A-1090 Vienna, Austria
[2] Univ Nat Resources & Life Sci, Dept IFA Tulin, Inst Environm Biotechnol, Vienna, Austria
[3] Austrian Ctr Ind Biotechnol, Graz, Austria
关键词
Archaea; Bacteria; Metabolism; Bioprocess; H-2; Closed batch; Batch; Continuous culture; Meta-data analysis; Statistics; Modelling; BIOLOGICAL HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; H-2; PRODUCTION; HYPERTHERMOPHILIC ARCHAEON; ENTEROBACTER-AEROGENES; THERMOTOGA-MARITIMA; CARBON-DIOXIDE; SODIUM FORMATE; GAS-PRODUCTION; FORMIC-ACID;
D O I
10.1016/j.biotechadv.2018.10.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A CO2-neutral energy production alternative compared to conventional fossil fuel utilization is biohydrogen (H-2) production. Three basic mechanisms for microbial H-2 production exist: photosynthetic H-2 production, photo-fermentative H-2 production, and dark fermentative H-2 production (DFHP). Despite surmounting reports in literature on the characterization and optimization of DFHP systems, H-2 production has not yet reached an industrial scale. Here, DFHP characteristics of pure culture of microorganisms from more than one century were reviewed and analysed. Analysing pure culture DFHP has the advantage that the physiology and the biotechnological potential of a specific organism can be exploited with the aim to optimize and establish a straightforward H-2 production bioprocess. Essential to this effort is the analysis of reported values across phylogenetically distinct groups of microorganisms. Therefore, an extensive review and subsequent in-depth meta-data analysis of DFHP from pure cultures was performed with the goals of providing: a comprehensive overview to their physiology, reviewing closed batch, batch, and continuous culture DFHP from an energy production perspective, and to integrate physiology and biotechnology through comprehensive meta-data analyses, statistics, and modelling. We revealed that a comparison of H-2 productivity and H-2 yield (Y-(H2/s)) could unambiguously be performed on a carbon molar level. Clear dependencies between (Y-(H2/s)) and the metabolic pathways of specific phylogenetic DFHP groups were found. With respect to specific H-2 productivity and Y-(H2/S) the superior phylogenetic group for DFHP was Thermococcaceae. Moreover, a distinct correlation between high Y-(H2/S) and high H-2 productivity was identified. The best substrate for H-2 production was found to be formate. Statistical analysis and modelling provided the input parameter sets that could be used to optimize of H-2 production of Clostridiaceae and Enterobacteriaceae. With respect to the overall goal to improve H-2 production beyond reported values, we suggest to utilize Thermococcaceae, and to integrate these organisms into a H-2 production set-up encompassing a cell retention system that would allow the accumulation of a high biomass density. Then both, high H-2 production and Y-(H2/s) might be achieved at the same time. Such an integrated system could finally render DFHP a biotechnologically useful process.
引用
下载
收藏
页码:2165 / 2186
页数:22
相关论文
共 50 条
  • [1] Dark Fermentative Biohydrogen Production: Recent Advances and Challenges
    Sohale, Anant Prasanna
    Janardanan, Sunder
    Yadav, Deepak
    Dash, Bibek
    Yadav, Manishkumar D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (37) : 14755 - 14771
  • [2] A comprehensive and quantitative review of dark fermentative biohydrogen production
    Simon Rittmann
    Christoph Herwig
    Microbial Cell Factories, 11
  • [3] A comprehensive and quantitative review of dark fermentative biohydrogen production
    Rittmann, Simon
    Herwig, Christoph
    MICROBIAL CELL FACTORIES, 2012, 11
  • [4] Genomic and proteomic approaches for dark fermentative biohydrogen production
    Sinha, Pallavi
    Roy, Shantonu
    Das, Debabrata
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 : 1308 - 1321
  • [5] Dark fermentative biohydrogen production from rice mill wastewater
    Ramu, Satheesh Murugan
    Dinesh, Gujuluva Hari
    Thulasinathan, Boobalan
    Rajan, Angelin Swetha Thondi
    Ponnuchamy, Kumar
    Pugazhendhi, Arivalagan
    Alagarsamy, Arun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 17233 - 17243
  • [6] Comparative study of biohydrogen production by four dark fermentative bacteria
    Hu, Cheng Cheng
    Giannis, Apostolos
    Chen, Chia-Lung
    Qi, Wei
    Wang, Jing-Yuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (35) : 15686 - 15692
  • [7] A bibliometric analysis of the role of nanotechnology in dark fermentative biohydrogen production
    Jannat F.T.
    Aftab K.
    Kalsoom U.
    Baig M.A.
    Environmental Science and Pollution Research, 31 (17) : 24815 - 24835
  • [8] Cladophora sp. as a sustainable feedstock for dark fermentative biohydrogen production
    Taskan, Banu
    Koroglu, Emre Oguz
    Taskan, Ergin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (34) : 15410 - 15418
  • [9] Effect of nanoparticles synthesized from green extracts on dark fermentative biohydrogen production
    Yildirim, Oznur
    Ozkaya, Bestami
    BIOMASS & BIOENERGY, 2023, 170
  • [10] Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review
    Bundhoo, M. A. Zumar
    Mohee, Romeela
    Hassan, M. Ali
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2015, 157 : 20 - 48