Convergence Properties of Certain Positive Linear Operators

被引:1
|
作者
Acu, Ana-Maria [1 ]
Manav, Nesibe [2 ]
Ratiu, Augusta [1 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, Sibiu 550012, Romania
[2] Gazi Univ, Sci Fac, Dept Math, TR-06500 Ankara, Turkey
关键词
Voronovskaja type theorem; Ditzian-Totik modulus of smoothness; linear positive operators; APPROXIMATION PROPERTIES; DURRMEYER; VARIANT;
D O I
10.1007/s00025-018-0931-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper deals with the modified positive linear operators that present a better degree of approximation than the original ones. This new construction of operators depend on a certain function defined on [0, 1]. Some approximation properties of these operators are given. Using the first order Ditzian-Totik modulus of smoothness, some Voronovskaja type theorems in quantitative mean are proved. The main results proved in this paper are applied for Bernstein operators, Lupas operators and genuine Bernstein-Durrmeyer operators. By numerical examples we show that depending on the choice of the function , the modified operator presents a better order of approximation than the classical ones.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Convergence Properties of Certain Positive Linear Operators
    Ana-Maria Acu
    Nesibe Manav
    Augusta Raţiu
    Results in Mathematics, 2019, 74
  • [3] Local approximation properties of certain class of linear positive operators via I-convergence
    Oezarslan, Mehmet Ali
    Aktuglu, Hueseyin
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (02): : 281 - 286
  • [4] Asymptotic properties of iterates of certain positive linear operators
    Mahmudov, N. I.
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) : 1480 - 1488
  • [5] Certain positive linear operators with better approximation properties
    Ratiu, Augusta
    Acu, Ana-Maria
    Acar, Tuncer
    Sofonea, Daniel Florin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (16) : 5133 - 5142
  • [6] CONVERGENCE OF CERTAIN POSITIVE CONVOLUTIVE OPERATORS
    MOLDOVAN, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (20): : 1311 - &
  • [7] Uniform convergence with certain linear operators
    Walczak, Z.
    Gupta, Vijay
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2007, 38 (04): : 259 - 269
  • [8] CERTAIN POSITIVE LINEAR-OPERATORS
    VOLKOV, YI
    MATHEMATICAL NOTES, 1978, 23 (5-6) : 363 - 368
  • [9] On the -Derivatives of a Certain Linear Positive Operators
    Gairola, Asha Ram
    Deepmala
    Mishra, Lakshmi Narayan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1409 - 1417
  • [10] Statistical σ-convergence of positive linear operators
    Demirci, Kamil
    Dirik, Fadime
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 375 - 380