MAXIMUM CONDITIONAL ENTROPY HAMILTONIAN MONTE CARLO SAMPLER

被引:0
|
作者
Yu, Tengchao [1 ]
Wang, Hongqiao [2 ]
Li, Jinglai [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 05期
关键词
Hamiltonian Monte Carlo; Kolmogorov--Sinai entropy; Markov chain Monte Carlo;
D O I
10.1137/20M1341192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The performance of a Hamiltonian Monte Carlo (HMC) sampler depends critically on some algorithm parameters, such as the total integration time and the numerical integration stepsize. The parameter tuning is particularly challenging when the mass matrix of the HMC sampler is adapted. We propose in this work a Kolmogorov--Sinai entropy (KSE)--based design criterion to optimize these algorithm parameters, which can avoid some potential issues in the often-used jumping-distance--based measures. For near-Gaussian distributions, we are able to derive the optimal algorithm parameters with respect to the KSE criterion analytically. As a by-product, the KSE criterion also provides a theoretical justification for the need to adapt the mass matrix in the HMC sampler. Based on the results, we propose an adaptive HMC algorithm, and we then demonstrate the performance of the proposed algorithm with numerical examples.
引用
收藏
页码:A3607 / A3626
页数:20
相关论文
共 50 条
  • [1] Monte Carlo, maximum entropy and importance sampling
    Levine, RD
    [J]. CHEMICAL PHYSICS, 1998, 228 (1-3) : 255 - 264
  • [2] Maximum Entropy Monte-Carlo Planning
    Xiao, Chenjun
    Mei, Jincheng
    Huang, Ruitong
    Schuurmans, Dale
    Mueller, Martin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Entropy-based adaptive Hamiltonian Monte Carlo
    Hirt, Marcel
    Titsias, Michalis K.
    Dellaportas, Petros
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] A MARKOV CHAIN MONTE CARLO SAMPLER FOR GENE GENEALOGIES CONDITIONAL ON HAPLOTYPE DATA
    Burkett, K. M.
    McNeney, B.
    Graham, J.
    [J]. SOME RECENT ADVANCES IN MATHEMATICS & STATISTICS, 2013, : 29 - 44
  • [6] The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
    Hoffman, Matthew D.
    Gelman, Andrew
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 1593 - 1623
  • [7] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [8] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [9] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    [J]. PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [10] Consistent application of maximum entropy to quantum Monte Carlo data
    vonderLinden, W
    Preuss, R
    Hanke, W
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (21) : 3881 - 3888