Consistency and Normality of M-Estimators in Partly Linear Models with Stochastic Adapted Errors

被引:0
|
作者
Yan, Li [1 ]
Chen, Xia [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
Piecewise polynomial; Partly linear model; M-estimator; Stochastic adapted sequence; STRONG LIMIT-THEOREMS; SEMIPARAMETRIC MODEL; LONGITUDINAL DATA; RANDOM-VARIABLES; RATES; CONVERGENCE; SEQUENCES;
D O I
10.1080/03610926.2012.657329
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The robust M-estimators for the partly linear model under stochastic adapted errors are considered. It is shown that the M-estimator of parameter is asymptotically normal and the M-estimator of the nonparametric function achieves the optimal rate of convergence for nonparametric regression. Some known results are improved and generalized. Some simulations and a real data example are conducted to illustrate the proposed method.
引用
收藏
页码:1557 / 1568
页数:12
相关论文
共 50 条