Minimax adjustment technique and fuzzy information

被引:5
|
作者
Arnold, BF [1 ]
Stahlecker, P [1 ]
机构
[1] Univ Hamburg, Inst Stat & Okonometrie, D-20146 Hamburg, Germany
关键词
ellipsoidal constraint; fuzzy information; minimax adjustment technique; portfolio selection; principal-agent problem; projection estimator; projection method; quadratic loss;
D O I
10.1016/S0024-3795(97)10005-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the minimax adjustment technique is generalized to fuzzy information sets. Using a quadratic loss function and specific ellipsoidal constraints the case of fuzzy information can be reduced to the case of crisp information. Here, the minimax adjustment technique is equivalent to a projection method; furthermore, a characterization of the solution is given being not far away from an explicit representation, Applications to statistics and to economics are presented. (C) 1999 Published by Elsevier Science Inc. All rights reserved.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [1] Minimax adjustment technique in a parameter restricted linear model
    Stahlecker, P
    Knautz, H
    Trenkler, G
    ACTA APPLICANDAE MATHEMATICAE, 1996, 43 (01) : 139 - 144
  • [2] The minimax adjustment principle
    Bernhard F. Arnold
    Peter Stahlecker
    Mathematical Methods of Operations Research, 2000, 51 : 103 - 113
  • [3] The minimax adjustment principle
    Arnold, BF
    Stahlecker, P
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2000, 51 (01) : 103 - 113
  • [4] Fuzzy prior information and minimax estimation in the linear regression model
    Bernhard F. Arnold
    Peter Stahlecker
    Statistical Papers, 1997, 38 : 377 - 391
  • [5] Fuzzy prior information and minimax estimation in the linear regression model
    Arnold, BF
    Stahlecker, P
    STATISTICAL PAPERS, 1997, 38 (04) : 377 - 391
  • [6] Fuzzy Minimax Nets
    Nguyen, Linh Anh
    Micic, Ivana
    Stanimirovic, Stefan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (08) : 2799 - 2808
  • [7] The minimax, the minimin, and the Hurwicz adjustment principle
    Arnold, BF
    Grössl, I
    Stahlecker, P
    THEORY AND DECISION, 2002, 52 (03) : 233 - 260
  • [8] The Minimax, the Minimin, and the Hurwicz Adjustment Principle
    Bernhard F. Arnold
    Ingrid Größl
    Peter Stahlecker
    Theory and Decision, 2002, 52 : 233 - 260
  • [9] Modelling of Fuzzy Expert Information in the Problem of a Machine Technological Adjustment
    Dimitrov, Valery
    Borisova, Lyudmila
    Nurutdinova, Inna
    XIII INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE DYNAMIC OF TECHNICAL SYSTEMS (DTS-2017), 2017, 132
  • [10] Minimax and the value of information
    Sadler, Evan
    THEORY AND DECISION, 2015, 78 (04) : 575 - 586