Developments of algebraic collective models and second-order phase transitions

被引:0
|
作者
Rowe, DJ [1 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
关键词
NUCLEUS;
D O I
10.1142/9789812702265_0034
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This talk focuses on three topics: the development of a program to determine SO(5) spherical harmonics and SO(5) Clebsch-Gordan coefficients; efficient ways to do collective model calculations in an SU(1, 1) x SO(5) D U(1) X SO(3) basis; and quasi-dynamical symmetry in an IBM second-order phase transition.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 50 条
  • [1] On the phase transitions of second-order
    Park, Y
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (11): : 1187 - 1194
  • [2] Singular Perturbation Models in Phase Transitions for Second-Order Materials
    Chermisi, M.
    Dal Maso, G.
    Fonseca, I.
    Leoni, G.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 367 - 409
  • [3] Friction and second-order phase transitions
    Einax, M
    Schulz, M
    Trimper, S
    PHYSICAL REVIEW E, 2004, 70 (04):
  • [4] Fracture and second-order phase transitions
    Moreno, Y
    Gómez, JB
    Pacheco, AF
    PHYSICAL REVIEW LETTERS, 2000, 85 (14) : 2865 - 2868
  • [5] Universality in the Dynamics of Second-Order Phase Transitions
    Nikoghosyan, G.
    Nigmatullin, R.
    Plenio, M. B.
    PHYSICAL REVIEW LETTERS, 2016, 116 (08)
  • [6] Second-order metropolitan urban phase transitions
    Murcio, Roberto
    Sosa-Herrera, Antonio
    Rodriguez-Romo, Suemi
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 22 - 31
  • [7] QUANTUM THEORY OF SECOND-ORDER PHASE TRANSITIONS
    KOBELEV, LY
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1967, 24 (03): : 10 - &
  • [8] ON THEORY OF SECOND-ORDER MAGNETIC PHASE TRANSITIONS
    SOLYOM, J
    ACTA CRYSTALLOGRAPHICA, 1966, S 21 : A100 - &
  • [9] Γ-Convergence and Stochastic Homogenization of Second-Order Singular Perturbation Models for Phase Transitions
    Donnarumma, Antonio Flavio
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (01)
  • [10] Quantum phase transitions in algebraic and collective models of nuclear structure
    Fortunato, L.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2021, 121 (121)