Immortalized human corneal epithelial cells (HCECs) and human lens epithelial cells (HLECs) were cultured in vitro. Cells were observed under a phase-contrast microscope and the integrity of cell monolayers was assayed by transepithelial electrical resistance (TEER) determination. The permeability of disulfiram (DSF) through a HCECs monolayer was compared with that of DSF through an excised rabbit cornea. The permeability coefficients of DSF through a HCECs monolayer and excised rabbit cornea were 29.5 +/- 4.8 x 10(-6) cm/s and 34.7 +/- 5.2 x 10(-6) cm/s, respectively. Diethyldithiocarbamate (DDC) had high permeability through HLECs monolayer with a permeability coefficient of 44.6 +/- 7.1 X 10(-6) cm/s. The cytotoxicity of DDC against HLECs was investigated using the trypan blue exclusion test. For a DDC concentration of 5 mmol/l, more than 85% cells were viable. DH3a1 mRNA was expressed in cultured HLECs. The expression of aldehyde dehydrogenase 3a1 (ALDH3a1), which may be be responsible for DSF-DDC conversion, was detected using RT-PCR and agarose gels electrophoresis. These results demonstrate that the permeability of DSF can be detected and intra-ocular drug action may be predicted using the cultured HCEC and HLEC monolayers as model.