Microstructures of poly (ethylene glycol) by molding and dewetting

被引:37
|
作者
Suh, KY [1 ]
Langer, R [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1604186
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the fabrication of microstructures of poly (ethylene glycol) (PEG) using a soft molding technique. When a patterned poly (dimethylsiloxane) stamp is placed on a wet PEG film, the polymer in contact with the stamp spontaneously moves into the void space as a result of capillary action. Three types of microstructures are observed with the substrate surface completely exposed: a negative replica of the stamp, a two-dimensional projection of the simple cubic structure, and a two-dimensional projection of the diamond structure. A molding process is responsible for the first type and a dewetting process for the final two. A phase diagram is constructed based on the effects of molecular weight and concentration, which shows that mobility and confinement play a crucial role in determining the particular type of microstructure obtained. The PEG microstructure could be used as a lithographic resist in fabricating electronic devices and a resistant layer for preventing nonspecific adsorption of proteins or cells. (C) 2003 American Institute of Physics.
引用
收藏
页码:1668 / 1670
页数:3
相关论文
共 50 条
  • [1] Poly(ethylene glycol) hydrogel microstructures encapsulating living cells
    Koh, WG
    Revzin, A
    Pishko, MV
    LANGMUIR, 2002, 18 (07) : 2459 - 2462
  • [2] Fabrication of poly(ethylene glycol) microstructures for protein and cell patterning
    Suh, KY
    Seong, JH
    Khademhosseini, A
    Laibinis, PE
    Langer, R
    NONTRADITIONAL APPROACHES TO PATTERNING, 2004, : 69 - 71
  • [3] Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography
    Revzin, A
    Russell, RJ
    Yadavalli, VK
    Koh, WG
    Deister, C
    Hile, DD
    Mellott, MB
    Pishko, MV
    LANGMUIR, 2001, 17 (18) : 5440 - 5447
  • [4] Hybrid hierarchical patterns of gold nanoparticles and poly(ethylene glycol) microstructures
    Chen, Jingyu
    Arafeh, Manar
    Guiet, Amandine
    Felkel, Diana
    Loebus, Axel
    Kelleher, Susan M.
    Fischer, Anna
    Lensen, Marga C.
    JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (46) : 7709 - 7715
  • [5] Nitric oxide sensitive fluorescent poly(ethylene glycol) hydrogel microstructures
    Zguris, J
    Pishko, MV
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 115 (01) : 503 - 509
  • [6] Safety of poly(ethylene glycol) and poly(ethylene glycol) derivatives
    Working, PK
    Newman, MS
    Johnson, J
    Cornacoff, JB
    POLY(ETHYLENE GLYCOL): CHEMISTRY AND BIOLOGICAL APPLICATIONS, 1997, 680 : 45 - 57
  • [7] FUNCTIONALIZATION OF POLY(ETHYLENE GLYCOL) AND MONOMETHOXY-POLY(ETHYLENE GLYCOL)
    BUCKMANN, AF
    MORR, M
    JOHANSSON, G
    MAKROMOLEKULARE CHEMIE-MACROMOLECULAR CHEMISTRY AND PHYSICS, 1981, 182 (05): : 1379 - 1384
  • [8] Formation of Microchannels in Poly(ethylene glycol) Hydrogels by Selective Degradation of Patterned Microstructures
    Chiu, Yu-Chieh
    Larson, Jeffery C.
    Perez-Luna, Victor H.
    Brey, Eric A.
    CHEMISTRY OF MATERIALS, 2009, 21 (08) : 1677 - 1682
  • [9] Synthesis of monomethoxy poly(ethylene glycol) without diol poly(ethylene glycol)
    Zhang, Jing
    Zhao, Yong-Jiang
    Su, Zhi-Guo
    Ma, Guang-Hui
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (06) : 3782 - 3786
  • [10] Solubility of valdecoxib in the presence of poly(ethylene glycol) 4000, poly(ethylene glycol) 6000, poly(ethylene glycol) 8000, and poly(ethylene glycol) 10 000 at (298.15, 303.15, and 308.15) K
    Liu, CG
    Desai, KGH
    Liu, CS
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2005, 50 (01): : 278 - 282