Multivariate Bayesian analysis for genetic evaluation and selection of Eucalyptus in multiple environment trials

被引:1
|
作者
Ferreira, Filipe Manoel [1 ]
Evangelista, Jeniffer Santana Pinto Coelho [1 ]
Chaves, Saulo Fabricio da Silva [1 ]
Alves, Rodrigo Silva [2 ]
Silva, Dandara Bonfim [3 ]
Malikouski, Renan Garcia [1 ]
Resende, Marcos Deon Vilela [4 ]
Bhering, Leonardo Lopes [1 ]
Santos, Gleison Augusto [5 ]
机构
[1] Univ Fed Vicosa, Dept Biol Geral, Vicosa, MG, Brazil
[2] Univ Fed Lavras, Inst Nacl Ciencia & Tecnol Cafe, Lavras, MG, Brazil
[3] Univ Estadual Paulista, Dept Biol Florestal, Botucatu, SP, Brazil
[4] Embrapa Cafe, Vicosa, MG, Brazil
[5] Univ Fed Vicosa, Dept Engn Florestal, Vicosa, MG, Brazil
关键词
quantitative genetics; multi-environment trials; genotype ? environment interaction; Eucalyptus spp; forest tree breeding; STEM STRAIGHTNESS; MIXED MODELS; GROWTH;
D O I
10.1590/1678-4499.20210347
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Forest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysi??s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multivariate Bayesian Analysis of On-Farm Trials with Multiple-Trait and Multiple-Environment Data
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Vargas Hernandez, Mateo
    Ortiz-Monasterio, Ivan
    Perez-Rodriguez, Paulino
    Burgueno, Juan
    Crossa, Jose
    AGRONOMY JOURNAL, 2019, 111 (06) : 2658 - 2669
  • [2] Multivariate analysis for the selection of eucalyptus clones destined for charcoal production
    Neves Mendes Castro, Ana Flavia
    Oliveira Castro, Renato Vinicius
    Oliveira Carneiro, Angelica de Cassia
    de Lima, Joao Eustaquio
    dos Santos, Rosimeire Cavalcante
    Corradi Pereira, Barbara Luisa
    Nogueira Alves, Isabel Cristina
    PESQUISA AGROPECUARIA BRASILEIRA, 2013, 48 (06) : 627 - 635
  • [4] An application of Bayesian techniques to the genetic evaluation of growth traits in Eucalyptus globulus
    Soria, F
    Basurco, F
    Toval, G
    Silió, L
    Rodriguez, MC
    Toro, M
    CANADIAN JOURNAL OF FOREST RESEARCH, 1998, 28 (09) : 1286 - 1294
  • [5] Bayesian factor analytic model: An approach in multiple environment trials
    Nuvunga, Joel Jorge
    da Silva, Carlos Pereira
    de Oliveira, Luciano Antonio
    de Lima, Renato Ribeiro
    Balestre, Marcio
    PLOS ONE, 2019, 14 (08):
  • [6] Evaluation of genetic parameters and clonal selection of Eucalyptus in the Cerrado region
    Oliveira, Rodrigo de Sousa
    Goncalves Ribeiro, Carlos Vinicius
    Neres, Deisiany Ferreira
    da Mota Porto, Antonio Carlos
    Ribeiro, Dalton
    de Siqueira, Leandro
    Valverde Zauza, Edival Angelo
    Guedes Coelho, Alexandre Siqueira
    Fioravante Reis, Cristiane Aparecida
    Alfenas, Acelino Couto
    Novaes, Evandro
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2020, 20 (03): : 1 - 9
  • [7] Bayesian multivariate genetic analysis improves translational insights
    Urbut, Sarah M.
    Koyama, Satoshi
    Hornsby, Whitney
    Bhukar, Rohan
    Kheterpal, Sumeet
    Truong, Buu
    Selvaraj, Margaret S.
    Neale, Benjamin
    O'Donnell, Christopher J.
    Peloso, Gina M.
    Natarajan, Pradeep
    ISCIENCE, 2023, 26 (10)
  • [8] Selection of eucalyptus genotypes for charcoal production based on using multivariate analysis
    Teixeira, Vinicius
    Carneiro, Angelica
    Leite, Helio
    Trugilho, Paulo
    Carvalho, Ana
    Castro, Renato
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 179
  • [9] Bayesian multivariate meta-analysis with multiple outcomes
    Wei, Yinghui
    Higgins, Julian P. T.
    STATISTICS IN MEDICINE, 2013, 32 (17) : 2911 - 2934
  • [10] Bayesian multivariate meta-analysis of multiple factors
    Lin, Lifeng
    Chu, Haitao
    RESEARCH SYNTHESIS METHODS, 2018, 9 (02) : 261 - 272