A q-EM based simulated annealing algorithm for finite mixture estimation

被引:0
|
作者
Guo, Wenbin [1 ]
Cui, Shuguang [1 ]
机构
[1] Univ Arizona, Dept ECE, Tucson, AZ 85721 USA
关键词
Expectation Maximization; simulated annealing; DAEM; Tsallis entropy; estimation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We develop a q-Expectation Maximization (q-EM) simulated annealing method for parameter estimation. The q-EM algorithm is a one-parameter generalization of normal Expectation Maximization (EM) algorithm based on Tsallis entropy. By incorporating the Simulated annealing method, we propose the q-Deterministic Annealing Expectation Maximization (q-DAEM) algorithm. Given the inherent connection between a physical annealing process and statistical mechanics, we show that the proposed algorithm actually minimizes a counterpart of the free energy in statistical mechanics by controlling an effective temperature. Simulations of mixed Gaussian parameter estimation show that the proposed method is much less initialization-dependent than the standard EM algorithm and converges dramatically faster than the DAEM algorithm.
引用
收藏
页码:1113 / +
页数:2
相关论文
共 50 条
  • [1] Finite mixture models estimation with a credal EM algorithm
    Vannoorenberghe, Patrick
    [J]. TRAITEMENT DU SIGNAL, 2007, 24 (02) : 103 - 113
  • [2] A SIMULATED ANNEALING TYPE EM ALGORITHM
    CELEUX, G
    DIEBOLT, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (03): : 119 - 124
  • [3] A Componentwise Simulated Annealing EM Algorithm for Mixtures
    Pervez, Affan
    Lee, Dongheui
    [J]. KI 2015: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2015, 9324 : 287 - 294
  • [4] Factorized EM algorithm for mixture estimation
    Nagy, I
    Nedoma, P
    Kárny, M
    [J]. ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 402 - 405
  • [5] An EM algorithm for a semiparametric finite mixture model
    Zhang, B
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (10) : 791 - 802
  • [6] Competitive EM algorithm for finite mixture models
    Zhang, BB
    Zhang, CS
    Yi, X
    [J]. PATTERN RECOGNITION, 2004, 37 (01) : 131 - 144
  • [7] Finite mixture modeling with mixture outcomes using the EM algorithm
    Muthén, B
    Shedden, K
    [J]. BIOMETRICS, 1999, 55 (02) : 463 - 469
  • [8] Fast Search and Estimation of Bayesian Nonparametric Mixture Models Using a Classification Annealing EM Algorithm
    Karabatsos, George
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 236 - 247
  • [9] Mixture conditional density estimation with the EM algorithm
    Vlassis, N
    Kröse, B
    [J]. NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 821 - 825
  • [10] Generalization of the EM algorithm for mixture density estimation
    Kehtarnavaz, N
    Nakamura, E
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (02) : 133 - 140