Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms

被引:0
|
作者
Michor, PW
Mumford, D
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
[2] Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
DOCUMENTA MATHEMATICA | 2005年 / 10卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The L-2-metric or Fubini-Study metric on the non-linear Grassmannian of all submanifolds of type M in a Riemannian manifold (N, g) induces geodesic distance 0. We discuss another metric which involves the mean curvature and shows that its geodesic distance is a good topological metric. The vanishing phenomenon for the geodesic distance holds also for all diffeomorphism groups for the L-2-metric.
引用
收藏
页码:217 / 245
页数:29
相关论文
共 50 条