Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model

被引:9
|
作者
Mao, Y. H. [1 ,2 ,3 ]
Li, Q. B. [1 ,2 ]
Henze, D. K. [4 ]
Jiang, Z. [5 ]
Jones, D. B. A. [2 ,5 ]
Kopacz, M. [6 ]
He, C. [1 ,2 ]
Qi, L. [1 ,2 ]
Gao, M. [1 ,2 ]
Hao, W. -M. [7 ]
Liou, K. -N. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA
[3] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[4] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[5] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[6] NOAA, Climate Program Off, Silver Spring, MD 20910 USA
[7] US Forest Serv, Fire Sci Lab, Missoula, MT 59808 USA
关键词
BIOMASS BURNING EMISSIONS; NITROGEN-OXIDE EMISSIONS; TERM CLIMATE-CHANGE; AIR-QUALITY; HIGH-RESOLUTION; CO EMISSIONS; BURNED-AREA; ATMOSPHERIC TRANSPORT; AMMONIA EMISSIONS; DATA ASSIMILATION;
D O I
10.5194/acp-15-7685-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We estimate black carbon (BC) emissions in the western United States for July-September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model (GEOS-Chem) and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2 degrees x 2.5 degrees (a factor of 2.1 increase) and 47.3 Gg at 0.5 degrees x 0.667 degrees (1.9 times increase). Model results now capture the observed major fire episodes with substantial bias reductions (similar to 35% at 2 degrees x 2.5 degrees and similar to 15% at 0.5 degrees x 0.667 degrees). The emissions are similar to 20-50% larger than those from our earlier analytical inversions (Mao et al., 2014). The discrepancy is especially drastic in the partitioning of anthropogenic versus biomass burning emissions. The August biomass burning BC emissions are 4.6-6.5 Gg and anthropogenic BC emissions 8.6-12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both anthropogenic and biomass burning emissions in the adjoint inversions increase 2-fold relative to the respective a priori emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the adjoint inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes). We find that the adjoint inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales.
引用
下载
收藏
页码:7685 / 7702
页数:18
相关论文
共 50 条
  • [1] Assessing remote polarimetric measurement sensitivities to aerosol emissions using the geos-chem adjoint model
    Meland, B. S.
    Xu, X.
    Henze, D. K.
    Wang, J.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (12) : 3441 - 3457
  • [2] Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model
    Zhu, L.
    Henze, D. K.
    Cady-Pereira, K. E.
    Shephard, M. W.
    Luo, M.
    Pinder, R. W.
    Bash, J. O.
    Jeong, G. -R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (08) : 3355 - 3368
  • [3] Constraining black carbon aerosol over Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem
    Zhang, L.
    Henze, D. K.
    Grell, G. A.
    Carmichael, G. R.
    Bousserez, N.
    Zhang, Q.
    Torres, O.
    Ahn, C.
    Lu, Z.
    Cao, J.
    Mao, Y.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (18) : 10281 - 10308
  • [4] Estimating emissions and concentrations of road dust aerosol over China using the GEOS-Chem model
    TANG Ying-Xiao
    LIAO Hong
    FENG Jin
    Atmospheric and Oceanic Science Letters, 2017, 10 (04) : 298 - 305
  • [5] Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model
    Wang, Jun
    Xu, Xiaoguang
    Henze, Daven K.
    Zeng, Jing
    Ji, Qiang
    Tsay, Si-Chee
    Huang, Jianping
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [6] Verifying Fossil-Fuel Carbon Dioxide Emissions Forecasted by an Artificial Neural Network with the GEOS-Chem Model
    WANG Yi-Nan
    Lü Da-Ren
    LI Qian
    PAN Yu-Bing
    Atmospheric and Oceanic Science Letters, 2014, 7 (05) : 377 - 381
  • [7] Verifying Fossil-Fuel Carbon Dioxide Emissions Forecasted by an Artificial Neural Network with the GEOS-Chem Model
    Wang Yi-Nan
    Lu Da-Ren
    Li Qian
    Pan Yu-Bing
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, 7 (05) : 377 - 381
  • [8] Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem
    Henze, D. K.
    Seinfeld, J. H.
    Shindell, D. T.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) : 5877 - 5903
  • [9] Estimation of GEOS-Chem and GOCART Simulated Aerosol Profiles Using CALIPSO Observations over the Contiguous United States
    Li, Shenshen
    Chen, Liangfu
    Fan, Meng
    Tao, Jinhua
    Wang, Zhongting
    Yu, Chao
    Si, Yidan
    Letu, Husi
    Liu, Yang
    AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (12) : 3256 - 3265
  • [10] Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model
    Wang, Long
    Wang, Shuxiao
    Zhang, Lei
    Wang, Yuxuan
    Zhang, Yanxu
    Nielsen, Chris
    McElroy, Michael B.
    Hao, Jiming
    ENVIRONMENTAL POLLUTION, 2014, 190 : 166 - 175