Modeling and simulation of sheet-metal part deformation in virtual assembly

被引:5
|
作者
Cheng, Huanchong [1 ,2 ]
Wu, Dianliang [1 ,2 ]
Fan, Xiumin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Shanghai Key Lab Adv Mfg Environm, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Sheet-metal part; Virtual assembly; Laplace operator; Deformation simulation; Triangle mesh; FINITE STRIP METHOD; THIN; ENVIRONMENT; DESIGN; TOOLS;
D O I
10.1007/s12652-018-0884-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interactive virtual assembly systems have been widely used in product development. In most virtual assembly systems, assembly parts are regard as rigid objects without deformation abilities because deformation representation need complex preprocess procedure that cost long computing time. In this paper, a new method based on the triangle facet model and the Laplace operator is presented to calculate the deformation of a sheet-metal part during an assembly process simulation. At the beginning of this method, the processing element is created directly from the triangle facet model in the virtual assembly system without a preprocessing step. Then a high-order Laplace operator is derived from the processing element. A calculation model is constructed according to the basic sheet deformation equation and the Laplace operator. Finally, a deformation solving pipeline is constructed and incorporated into the virtual assembly system. The proposed method is studied on a virtual aircraft assembly case to calculate and visualize the deformation of a sheet-metal part. Compared with the FEM (Finite Element Method), the proposed method has a higher solving speed and a simpler preprocessing process, which provides a swift alternative for sheet deformation calculation during the interactive assembly simulation.
引用
收藏
页码:1231 / 1240
页数:10
相关论文
共 50 条