Calculation of the electronic structure of the vanadium dioxide VO2 in the monoclinic low-temperature phase M1 using the generalized transition state method

被引:6
|
作者
Kozhevnikov, A. V. [1 ]
Anisimov, V. I. [1 ]
Korotin, M. A. [1 ]
机构
[1] Russian Acad Sci, Inst Met Phys, Ural Div, R-620041 Ekaterinburg, Russia
来源
PHYSICS OF METALS AND METALLOGRAPHY | 2007年 / 104卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0031918X07090013
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
It is known that the ground state of the vanadium dioxide in the low-temperature monoclinic phase M (1) is a nonmagnetic insulator. The calculations in the local-density approximation (LDA) predict the metallic nonmagnetic state, whereas the calculations in terms of the LDA + U approach (local-density approximation with explicit allowance for on-site Coulomb correlations U) predict the insulating antiferromagnetic state. In terms of the method of generalized transition state, the nonmagnetic insulating state of VO2 in the M (1) phase with a band gap of 0.3 eV has been reproduced for the first time.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 29 条
  • [1] Calculation of the electronic structure of the vanadium dioxide VO2 in the monoclinic low-temperature phase M1 using the generalized transition state method
    A. V. Kozhevnikov
    V. I. Anisimov
    M. A. Korotin
    The Physics of Metals and Metallography, 2007, 104 : 215 - 220
  • [2] Room-temperature ferromagnetism properties of monoclinic VO2 (M1) nanobelts
    Guo, Donglin
    Hu, Chenguo
    Yang, Qi
    Hua, Hao
    Li, Wanjun
    Kong, Chunyang
    MATERIALS RESEARCH BULLETIN, 2014, 53 : 102 - 106
  • [3] Monoclinic M1 phase of VO2: Mott-Hubbard versus band insulator
    Belozerov, A. S.
    Korotin, M. A.
    Anisimov, V. I.
    Poteryaev, A. I.
    PHYSICAL REVIEW B, 2012, 85 (04)
  • [4] ELECTRICAL PROPERTIES OF PHASES OF LOW-TEMPERATURE M1, T AND M2 IN CHROMIUM AND ALUMINUM DOPED VO2
    VILLENEUVE, G
    DRILLON, M
    LAUNAY, JC
    MARQUESTAUT, E
    HAGENMULLER, P
    SOLID STATE COMMUNICATIONS, 1975, 17 (06) : 657 - 661
  • [5] Low-temperature method for thermochromic high ordered VO2 phase formation
    Melnik, V.
    Khatsevych, I.
    Kladko, V.
    Kuchuk, A.
    Nikirin, V.
    Romanyuk, B.
    MATERIALS LETTERS, 2012, 68 : 215 - 217
  • [6] Insights into the phase transition behavior of thermochromic VO2 (M1) powders doped with Tungsten
    Xue, Yibei
    Sekino, Tohru
    Miao, Lei
    Hasegawa, Takuya
    Okawa, Ayahisa
    Goto, Tomoyo
    Yin, Shu
    Seo, Yeongjun
    ADVANCED POWDER TECHNOLOGY, 2025, 36 (05)
  • [7] Production of VO2 M1 and M2 Nanoparticles and Composites and the Influence of the Substrate on the Structural Phase Transition
    Booth, Jamie M.
    Casey, Philip S.
    ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (09) : 1899 - 1905
  • [8] Sharp Phase Transition by the Enhanced Lattice Stability of Low-Temperature Phase of Cr-Doped VO2
    Hong, Seong-Cheol
    Lee, Myeongsoon
    Lee, Myung Won
    Kim, Don
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2021, 42 (09) : 1232 - 1238
  • [9] An approach for obtaining thermochromic smart windows with excellent performance and low phase transition temperature based on VO2/ tungsten-doped VO2/VO2 composite structure
    Zong, Haitao
    Chen, Houchang
    Bian, Linyan
    Sun, Bai
    Yin, Yuehong
    Zhang, Cong
    Qiao, Wentao
    Yan, Lingling
    Hu, Qiang
    Li, Ming
    INFRARED PHYSICS & TECHNOLOGY, 2024, 137
  • [10] Phase transition behavior in nanostructured VO2 with M1, M2, and R phases observed via temperature-dependent XRD measurements
    Nishikawa, Kazutaka
    Yoshimura, Masamichi
    Watanabe, Yoshihide
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2022, 40 (03):