Nonexistence of positive classical solutions for the nonlinear Schrodinger equation with unbounded or decaying weights

被引:1
|
作者
Albuquerque, Francisco S. B. [1 ]
Medeiros, Everaldo S. [2 ]
机构
[1] Univ Estadual Paraiba, Ctr Ciencias Exatas & Sociais Aplicadas, BR-58700070 Patos de Minas, PB, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; ELECTROMAGNETIC-FIELD; EXISTENCE; R(2);
D O I
10.1007/978-3-319-19902-3_1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a nonexistence result of positive classical solutions for a class of nonlinear Schrödinger equations involving unbounded, singular at the origin or decaying weights in dimension two. Our approach relies on the average argument. © 2015, Springer International Publishing Switzerland.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Positive solutions for the logistic equation with unbounded weights
    Hernandez, J
    [J]. REACTION DIFFUSION SYSTEMS, 1998, 194 : 183 - 197
  • [2] Existence and nonexistence of solutions for the fractional nonlinear Schrodinger equation
    Alarcon, Salomon
    Ritorto, Antonella
    Silva, Analia
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8903 - 8924
  • [3] RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    CAZENAVE, T
    WEISSLER, FB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) : 75 - 100
  • [4] Weakly decaying solutions of nonlinear Schrodinger equation in the plane
    Villarroel, Javier
    Prada, Julia
    Estevez, Pilar G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (49)
  • [6] A note on slowly decaying solutions of the defocusing nonlinear Schrodinger equation
    Barran, S
    Kovalyov, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (34): : 6121 - 6125
  • [7] Multiplicity of positive solutions of a nonlinear Schrodinger equation
    Ding, YH
    Tanaka, K
    [J]. MANUSCRIPTA MATHEMATICA, 2003, 112 (01) : 109 - 135
  • [8] Multiple positive solutions for a nonlinear Schrodinger equation
    Bartsch, T
    Wang, ZQ
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03): : 366 - 384
  • [9] Nonexistence of Global Weak Solutions for a Nonlinear Schrodinger Equation in an Exterior Domain
    Alqahtani, Awatif
    Jleli, Mohamed
    Samet, Bessem
    Vetro, Calogero
    [J]. SYMMETRY-BASEL, 2020, 12 (03):
  • [10] Nonlinear schrodinger equations with unbounded and decaying radial potentials
    Su, Jiabao
    Wang, Zhi-Qiang
    Willem, Michel
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (04) : 571 - 583