Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes

被引:10
|
作者
Griffin, J. E. [1 ]
Steel, M. F. J. [2 ]
机构
[1] Univ Kent, Inst Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
SIMULATION; DRIVEN;
D O I
10.1016/j.csda.2009.06.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Continuous superpositions of Ornstein-Uhlenbeck processes are proposed as a model for asset return volatility. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. In contrast, previously studied discrete superpositions cannot generate this behaviour. Efficient Markov chain Monte Carlo methods for Bayesian inference are developed which allow the estimation of such models with leverage effects. The continuous superposition model is applied to both stock index and exchange rate data. The continuous superposition model is compared with a two-component superposition on the daily Standard and Poor's 500 index from 1980 to 2000. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2594 / 2608
页数:15
相关论文
共 50 条
  • [1] Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes
    Roberts, GO
    Papaspiliopoulos, O
    Dellaportas, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 369 - 393
  • [2] Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility
    Griffin, J. E.
    Steel, M. F. J.
    [J]. JOURNAL OF ECONOMETRICS, 2006, 134 (02) : 605 - 644
  • [3] Inference in Infinite Superpositions of Non-Gaussian Ornstein-Uhlenbeck Processes Using Bayesian Nonparametic Methods
    Griffin, J. E.
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2011, 9 (03) : 519 - 549
  • [4] Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes
    Raknerud, Arvid
    Skare, Oivind
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) : 3260 - 3275
  • [5] Ornstein-Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility
    Benth, Fred Espen
    Ruediger, Barbara
    Suess, Andre
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 461 - 486
  • [6] GAUSSIAN AND NON-GAUSSIAN DISTRIBUTION-VALUED ORNSTEIN-UHLENBECK PROCESSES
    BOJDECKI, T
    GOROSTIZA, LG
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06): : 1136 - 1149
  • [7] Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes
    Taufer, Emanuele
    Leonenko, Nikolai
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3050 - 3063
  • [8] Moment-matching approximations for stochastic sums in non-Gaussian Ornstein-Uhlenbeck models
    Brignone, Riccardo
    Kyriakou, Ioannis
    Fusai, Gianluca
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2021, 96 : 232 - 247
  • [9] Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models
    Mariani, Maria C.
    Bhuiyan, Md Al Masum
    Tweneboah, Osei K.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 167 - 176
  • [10] ORNSTEIN-UHLENBECK PROCESS WITH NON-GAUSSIAN STRUCTURE
    Obuchowski, Jakub
    Wylomanska, Agnieszka
    [J]. ACTA PHYSICA POLONICA B, 2013, 44 (05): : 1123 - 1136