ARTIN PRIME PRODUCING POLYNOMIALS

被引:0
|
作者
Akbary, Amir [1 ]
Scholten, Keilan [1 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Artin's primitive root conjecture; prime producing polynomials; ARITHMETIC-PROGRESSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define an Artin prime for an integer g to be a prime such that g is a primitive root modulo that prime. Let g is an element of Z \ {-1} and not a perfect square. A conjecture of Artin states that the set of Artin primes for g has a positive density. In this paper we study a generalization of this conjecture for the primes produced by a polynomial and explore its connection with the problem of finding a fixed integer g and a prime producing polynomial f(x) with the property that a long string of consecutive primes produced by f(x) are Artin primes for g. By employing some results of Moree, we propose a general method for finding such polynomials f(x) and integers g. We then apply this general procedure for linear, quadratic, and cubic polynomials to generate many examples of polynomials with very large Artin prime production length. More specifically, among many other examples, we exhibit linear, quadratic, and cubic (respectively) polynomials with 6355, 37951, and 10011 (respectively) consecutive Artin primes for certain integers g.
引用
收藏
页码:1861 / 1882
页数:22
相关论文
共 50 条
  • [1] Artin prime producing quadratics
    Moree, P.
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2007, 77 (1): : 109 - 127
  • [2] Artin prime producing quadratics
    P. Moree
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2007, 77 : 109 - 127
  • [3] The Artin-Hasse series and Laguerre polynomials modulo a prime
    Avitabile, Marina
    Mattarei, Sandro
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (05) : 1409 - 1417
  • [4] Prime-producing cubic polynomials
    Mott, JL
    Rose, K
    [J]. IDEAL THEORETIC METHODS IN COMMUTATIVE ALGEBRA, 2001, 220 : 281 - 317
  • [5] PRIME PRODUCING POLYNOMIALS WITH SOME DEGREES
    Lee, Seungheon
    Choi, Geon
    Park, Jinseo
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (02): : 335 - 339
  • [6] Artin prime producing quadratics (vol 77, pg 109, 2007)
    Gallot, Yves
    Moree, Pieter
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2015, 85 (01): : 87 - 88
  • [7] Addendum to the paper: “Artin prime producing quadratics”, by P. Moree
    Gallot Y.
    Moree P.
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2015, 85 (1) : 87 - 88
  • [8] Prime producing polynomials: Proof of a conjecture by Mollin and Williams
    Srinivasan, A
    [J]. ACTA ARITHMETICA, 1999, 89 (01) : 1 - 7
  • [9] Prime Producing Quadratic Polynomials and Class Number One or Two
    Anitha Srinivasan
    [J]. The Ramanujan Journal, 2005, 10 : 5 - 22
  • [10] Prime producing quadratic polynomials and class number one or two
    Srinivasan, A
    [J]. RAMANUJAN JOURNAL, 2005, 10 (01): : 5 - 22