On the error in computing Lyapunov exponents by QR Methods

被引:32
|
作者
Dieci, L [1 ]
Van Vleck, ES
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
65L;
D O I
10.1007/s00211-005-0644-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the error introduced using QR methods to approximate Lyapunov exponents. We give a backward error statement for linear non-autonomous systems, and further discuss nonlinear autonomous problems. In particular, for linear systems we show that one approximates a "nearby" discontinuous problem where how nearby is measured in terms of local errors and a measure of non-normality. For nonlinear problems we use a type of shadowing result.
引用
收藏
页码:619 / 642
页数:24
相关论文
共 50 条
  • [1] On the error in computing Lyapunov exponents by QR Methods
    Luca Dieci
    Erik S. Van Vleck
    Numerische Mathematik, 2005, 101 : 619 - 642
  • [2] Perturbation Theory for Approximation of Lyapunov Exponents by QR Methods
    Luca Dieci
    Erik S. Van Vleck
    Journal of Dynamics and Differential Equations, 2006, 18 : 815 - 840
  • [3] Perturbation theory for approximation of Lyapunov exponents by QR methods
    Dieci, Luca
    Van Vleck, Erik S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (03) : 815 - 840
  • [4] Error analysis of a hybrid method for computing Lyapunov exponents
    Wolf-Jürgen Beyn
    Alexander Lust
    Numerische Mathematik, 2013, 123 : 189 - 217
  • [5] COMPARISON OF DIFFERENT METHODS FOR COMPUTING LYAPUNOV EXPONENTS
    GEIST, K
    PARLITZ, U
    LAUTERBORN, W
    PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (05): : 875 - 893
  • [6] Error analysis of a hybrid method for computing Lyapunov exponents
    Beyn, Wolf-Juergen
    Lust, Alexander
    NUMERISCHE MATHEMATIK, 2013, 123 (02) : 189 - 217
  • [7] An efficient QR based method for the computation of Lyapunov exponents
    vonBremen, HF
    Udwadia, FE
    Proskurowski, W
    PHYSICA D, 1997, 101 (1-2): : 1 - 16
  • [8] QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations
    Vu Hoang Linh
    Volker Mehrmann
    Erik S. Van Vleck
    Advances in Computational Mathematics, 2011, 35 : 281 - 322
  • [9] A hybrid method for computing Lyapunov exponents
    Beyn, Wolf-Juergen
    Lust, Alexander
    NUMERISCHE MATHEMATIK, 2009, 113 (03) : 357 - 375
  • [10] A NEW METHOD FOR COMPUTING LYAPUNOV EXPONENTS
    BARNA, G
    TSUDA, I
    PHYSICS LETTERS A, 1993, 175 (06) : 421 - 427