Quantum error correction of spin quantum memories in diamond under a zero magnetic field

被引:8
|
作者
Nakazato, Takaya [1 ]
Reyes, Raustin [1 ]
Imaike, Nobuaki [1 ]
Matsuda, Kazuyasu [1 ]
Tsurumoto, Kazuya [1 ]
Sekiguchi, Yuhei [2 ]
Kosaka, Hideo [1 ,2 ]
机构
[1] Yokohama Natl Univ, Grad Sch Engn Sci, Dept Phys, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[2] Yokohama Natl Univ, Inst Adv Sci, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
SUPERCONDUCTING FLUX QUBIT; GEOMETRIC SPIN; DECOHERENCE; GATES;
D O I
10.1038/s42005-022-00875-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The efficacy of quantum error correction of spins in a diamond nitrogen-vacancy that uses magnetic fields depends on spin's location in the lattice. Here, an alternative, zero-field approach relying on geometric phase is demonstrated in a three-qubit system. Fault-tolerant quantum memory plays a key role in interfacing quantum computers with quantum networks to construct quantum computer networks. Manipulation of spin quantum memory generally requires a magnetic field, which hinders the integration with superconducting qubits. Completely zero-field operation is desirable for scaling up a quantum computer based on superconducting qubits. Here we demonstrate quantum error correction to protect the nuclear spin of the nitrogen as a quantum memory in a diamond nitrogen-vacancy center with two nuclear spins of the surrounding carbon isotopes under a zero magnetic field. The quantum error correction makes quantum memory resilient against operational or environmental errors without the need for magnetic fields and opens a way toward distributed quantum computation and a quantum internet with memory-based quantum interfaces or quantum repeaters.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum error correction of spin quantum memories in diamond under a zero magnetic field
    Takaya Nakazato
    Raustin Reyes
    Nobuaki Imaike
    Kazuyasu Matsuda
    Kazuya Tsurumoto
    Yuhei Sekiguchi
    Hideo Kosaka
    Communications Physics, 5
  • [2] Quantum error correction for quantum memories
    Terhal, Barbara M.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [3] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [4] Error correction for a spin quantum computer
    Berman, GP
    Campbell, DK
    Tsifrinovich, VI
    PHYSICAL REVIEW B, 1997, 55 (09): : 5929 - 5936
  • [5] Zero-error quantum hypothesis testing in finite time with quantum error correction
    Chen, Yu
    Yuan, Haidong
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [6] Quantum Error Correction with magnetic molecules
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Clemente-Juan, Juan M.
    Escalera-Moreno, Luis
    Gaita-Arino, Alejandro
    Minguez Espallargas, Guillermo
    EPL, 2015, 110 (03)
  • [7] Spin depolarization in quantum wires polarized spontaneously in zero magnetic field
    Bagraev, NT
    Shelykh, IA
    Ivanov, VK
    Klyachkin, LE
    PHYSICAL REVIEW B, 2004, 70 (15) : 155315 - 1
  • [8] Spin-charge coupling in quantum wires at zero magnetic field
    Pereira, Rodrigo G.
    Sela, Eran
    PHYSICAL REVIEW B, 2010, 82 (11):
  • [9] Spin splitting of excitons in GaAs quantum wells at zero magnetic field
    Munoz, L
    Perez, E
    Vina, L
    FernandezRossier, J
    Tejedor, C
    Ploog, K
    SOLID-STATE ELECTRONICS, 1996, 40 (1-8) : 755 - 758
  • [10] Tailoring quantum error correction to spin qubits
    Hetenyi, Bence
    Wootton, James R.
    PHYSICAL REVIEW A, 2024, 109 (03)