Quasi-freestanding graphene on SiC(0001) via cobalt intercalation of zero-layer graphene

被引:7
|
作者
Rybkina, A. A. [1 ]
Filnov, S. O. [1 ]
Tarasov, A., V [1 ]
Danilov, D., V [1 ]
Likholetova, M., V [1 ]
Voroshnin, V. Yu [1 ,2 ]
Pudikov, D. A. [1 ]
Glazkova, D. A. [1 ]
Eryzhenkov, A., V [1 ]
Eliseyev, I. A. [1 ]
Davydov, V. Yu [3 ]
Shikin, A. M. [1 ]
Rybkin, A. G. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
[2] Elektronenspeicherring BESSY II, Helmholtz Zentrum Berlin Mat & Energie, Albert Einstein Str 15, D-12489 Berlin, Germany
[3] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
X-RAY PHOTOEMISSION; ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; RAMAN-SPECTROSCOPY; CARBON; FILMS; MORPHOLOGY; ANISOTROPY; SILICIDES; NICKEL;
D O I
10.1103/PhysRevB.104.155423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modification of the electronic and crystal structure of zero-layer graphene grown on 6H-SiC(0001) after Co intercalation is reported. Using a wide range of techniques including angle-resolved photoelectron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, low-energy electron diffraction, we found that zero-layer graphene on SiC transforms into graphene monolayer as a result of cobalt intercalation. The Dirac cone of pi band characteristic of quasi-freestanding graphene is observed. In combination with high-resolution transmission electron microscopy and atomic force microscopy data, we conclude that ultrathin silicide CoSi/CoSi2 structure is formed between graphene and SiC substrate. Investigation of magnetic properties reveals ferromagnetic behavior with open hysteresis loop. The results of this work are the basis for further implementation of magneto-spin-orbit graphene on a semiconducting substrate and are important for the future application of such graphene in spintronics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quasi-freestanding Graphene on SiC(0001)
    Speck, F.
    Ostler, M.
    Roehrl, J.
    Jobst, J.
    Waldmann, D.
    Hundhausen, M.
    Ley, L.
    Weber, H. B.
    Seyller, Th.
    SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2, 2010, 645-648 : 629 - +
  • [2] Quasi-Freestanding Graphene via Sulfur Intercalation: Evidence for a Transition State
    Wolff, Susanne
    Tilgner, Niclas
    Speck, Florian
    Schadlich, Philip
    Goehler, Fabian
    Seyller, Thomas
    ADVANCED MATERIALS INTERFACES, 2024, 11 (02)
  • [3] Quasi-freestanding graphene on Ni(111) by Cs intercalation
    Alattas, M.
    Schwingenschlogl, U.
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Quasi-freestanding graphene on Ni(111) by Cs intercalation
    M. Alattas
    U. Schwingenschlögl
    Scientific Reports, 6
  • [5] Electronic properties of zero-layer graphene on 6H-SiC(0001) substrate decoupled by silicon intercalation
    Silly, M. G.
    Li, G.
    Dappe, Y. J.
    SURFACE AND INTERFACE ANALYSIS, 2014, 46 (12-13) : 1273 - 1277
  • [6] Quasi-Freestanding Graphene on SiC(0001) by Ar-Mediated Intercalation of Antimony: A Route Toward Intercalation of High-Vapor-Pressure Elements
    Wolff, Susanne
    Roscher, Sarah
    Timmermann, Felix
    Daniel, Marcus V.
    Speck, Florian
    Wanke, Martina
    Albrecht, Manfred
    Seyller, Thomas
    ANNALEN DER PHYSIK, 2019, 531 (11)
  • [7] Theoretical Study of Cu Intercalation through a Defect in Zero-Layer Graphene on SiC Surface
    Orimoto, Yuuichi
    Otsuka, Kohei
    Yagyu, Kazuma
    Tochihara, Hiroshi
    Suzuki, Takayuki
    Aoki, Yuriko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (13): : 7294 - 7302
  • [8] Robust Ferrimagnetism in Quasi-Freestanding Graphene
    Rybkin, A. G.
    Tarasov, A. V.
    Gogina, A. A.
    Eryzhenkov, A. V.
    Rybkina, A. A.
    JETP LETTERS, 2023, 117 (08) : 624 - 629
  • [9] Robust Ferrimagnetism in Quasi-Freestanding Graphene
    A. G. Rybkin
    A. V. Tarasov
    A. A. Gogina
    A. V. Eryzhenkov
    A. A. Rybkina
    JETP Letters, 2023, 117 : 624 - 629
  • [10] Quasi-Freestanding Graphene via Sulfur Intercalation: Evidence for a Transition State (vol 11, 2300725, 2024)
    Wolff, Susanne
    Tilgner, Niclas
    Speck, Florian
    Schaedlich, Philip
    Goehler, Fabian
    Seyller, Thomas
    ADVANCED MATERIALS INTERFACES, 2024,