Meta-analysis of Proportions of Rare Events-A Comparison of Exact Likelihood Methods with Robust Variance Estimation
被引:22
|
作者:
Ma, Yan
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Epidemiol & Biostat, 950 New Hampshire Ave, Washington, DC 20052 USAGeorge Washington Univ, Dept Epidemiol & Biostat, 950 New Hampshire Ave, Washington, DC 20052 USA
Ma, Yan
[1
]
Chu, Haitao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Publ Hlth, Minneapolis, MN USAGeorge Washington Univ, Dept Epidemiol & Biostat, 950 New Hampshire Ave, Washington, DC 20052 USA
Chu, Haitao
[2
]
Mazumdar, Madhu
论文数: 0引用数: 0
h-index: 0
机构:
Mt Sinai Hlth Syst, Inst Healthcare Delivery Sci, New York, NY USAGeorge Washington Univ, Dept Epidemiol & Biostat, 950 New Hampshire Ave, Washington, DC 20052 USA
Mazumdar, Madhu
[3
]
机构:
[1] George Washington Univ, Dept Epidemiol & Biostat, 950 New Hampshire Ave, Washington, DC 20052 USA
[2] Univ Minnesota, Sch Publ Hlth, Minneapolis, MN USA
[3] Mt Sinai Hlth Syst, Inst Healthcare Delivery Sci, New York, NY USA
The conventional random effects model for meta-analysis of proportions approximates within-study variation using a normal distribution. Due to potential approximation bias, particularly for the estimation of rare events such as some adverse drug reactions, the conventional method is considered inferior to the exact methods based on binomial distributions. In this article, we compare two existing exact approachesbeta binomial (B-B) and normal-binomial (N-B)through an extensive simulation study with focus on the case of rare events that are commonly encountered in medical research. In addition, we implement the empirical (sandwich) estimator of variance into the two models to improve the robustness of the statistical inferences. To our knowledge, it is the first such application of sandwich estimator of variance to meta-analysis of proportions. The simulation study shows that the B-B approach tends to have substantially smaller bias and mean squared error than N-B for rare events with occurrences under 5%, while N-B outperforms B-B for relatively common events. Use of the sandwich estimator of variance improves the precision of estimation for both models. We illustrate the two approaches by applying them to two published meta-analysis from the fields of orthopedic surgery and prevention of adverse drug reactions.
机构:
Univ Paris Cite, Res Ctr Epidemiol & Stat, CRESS U1153, INSERM, Paris, FranceUniv Paris Cite, Res Ctr Epidemiol & Stat, CRESS U1153, INSERM, Paris, France
Evrenoglou, Theodoros
White, Ian R.
论文数: 0引用数: 0
h-index: 0
机构:
UCL, MRC Clin Trials Unit, London, EnglandUniv Paris Cite, Res Ctr Epidemiol & Stat, CRESS U1153, INSERM, Paris, France
White, Ian R.
Afach, Sivem
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Creteil, UPEC, Creteil, FranceUniv Paris Cite, Res Ctr Epidemiol & Stat, CRESS U1153, INSERM, Paris, France
Afach, Sivem
论文数: 引用数:
h-index:
机构:
Mavridis, Dimitris
Chaimani, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Res Ctr Epidemiol & Stat, CRESS U1153, INSERM, Paris, France
Cochrane France, Paris, FranceUniv Paris Cite, Res Ctr Epidemiol & Stat, CRESS U1153, INSERM, Paris, France
机构:
Univ Illinois, Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL 60607 USA
Univ Illinois, Coll Appl Hlth Sci, Chicago, IL USAUniv Illinois, Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL 60607 USA
Zejnullahi, Rrita
Hedges, Larry V.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Stat, Evanston, IL USAUniv Illinois, Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL 60607 USA
机构:
Univ Wisconsin Madison, Dept Educ Psychol, 1082C Educ Sci,1025 West Johnson St, Madison, WI 53706 USAUniv Wisconsin Madison, Dept Educ Psychol, 1082C Educ Sci,1025 West Johnson St, Madison, WI 53706 USA
Pustejovsky, James E.
Tipton, Elizabeth
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Stat, Evanston, IL 60208 USAUniv Wisconsin Madison, Dept Educ Psychol, 1082C Educ Sci,1025 West Johnson St, Madison, WI 53706 USA