The global geometry of stochastic Loewner evolutions

被引:0
|
作者
Friedrich, Roland [1 ]
机构
[1] CBS MPI, D-04103 Leipzig, Germany
来源
关键词
Complex variables; stochastic analysis; Conformal Field Theory; CONFORMAL FIELD-THEORY; RESTRICTION; REPRESENTATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we develop a concise description of the global geometry which is underlying the universal construction of all possible generalised Stochastic,Loewner Evolutions. The main ingredient is the Universal Grassmannian of Sato-Segal-Wilson. We illustrate the situation in the case of univalent functions defined on the unit disc and the classical Schramm-Loewner stochastic differential equation. In particular we show how the Virasoro algebra acts on probability measures. This approach provides the natural connection with Conformal Field Theory and Integrable Systems.
引用
收藏
页码:79 / 117
页数:39
相关论文
共 50 条
  • [1] Dipolar stochastic Loewner evolutions
    Bauer, M
    Bernard, D
    Houdayer, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 1 - 18
  • [2] Stochastic geometry of critical curves, Schramm-Loewner evolutions and conformal field theory
    Gruzberg, Ilya A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (41): : 12601 - 12655
  • [3] Conformal Field Theories of Stochastic Loewner Evolutions
    Michel Bauer
    Denis Bernard
    [J]. Communications in Mathematical Physics, 2003, 239 : 493 - 521
  • [4] Entropy Flux in Stochastic and Chaotic Loewner Evolutions
    Shibasaki, Yusuke
    Saito, Minoru
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (11)
  • [5] Conformal field theories of stochastic Loewner evolutions
    Bauer, M
    Bernard, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) : 493 - 521
  • [6] Stochastic Komatu-Loewner evolutions and SLEs
    Chen, Zhen-Qing
    Fukushima, Masatoshi
    Suzuki, Hiroyuki
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (06) : 2068 - 2087
  • [7] Stochastic Loewner evolutions, Fuchsian systems and orthogonal polynomials
    Loutsenko, Igor
    Yermolayeva, Oksana
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [8] Stochastic Komatu-Loewner evolutions and BMD domain constant
    Chen, Zhen-Qing
    Fukushima, Masatoshi
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 545 - 594
  • [9] Exact Solutions for Loewner Evolutions
    Wouter Kager
    Bernard Nienhuis
    Leo P. Kadanoff
    [J]. Journal of Statistical Physics, 2004, 115 : 805 - 822
  • [10] Exact solutions for Loewner evolutions
    Kager, W
    Nienhuis, B
    Kadanoff, LP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (3-4) : 805 - 822