Asymptotic solution of the Henon-Heiles Hamiltonian system

被引:0
|
作者
Petrov, A. G. [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech, Moscow 119526, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1028335807110146
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The invariant normalization method was used for the construction of the general Cauchy problem for the Hamiltonian system of the Henon-Heiles equations. The error in the solution is on the order of the fourth power of the oscillation amplitude. This system has two degrees of freedom and the quadratic part determines linear oscillations with frequency equal to unity. The general solution describes a periodic process of energy pumping from one degree of freedom to another. The period of this process is inversely proportional to the square of the amplitude, while the previously constructed periodic solution follow from the solution. The computational algorithm for canonical normalizing substitutions and normal forms can be classified according to the method for determining a canonical substitution. The advantage of the Hamiltonian normal form over the other forms is that two integrals exist for this form in any approximation and the equations of the normal form can be integrated in quadratures.
引用
收藏
页码:635 / 639
页数:5
相关论文
共 50 条
  • [1] Asymptotic solution of the Henon-Heiles Hamiltonian system
    A. G. Petrov
    [J]. Doklady Physics, 2007, 52 : 635 - 639
  • [2] HAMILTONIAN SYMMETRIES OF THE HENON-HEILES SYSTEM
    FORDY, AP
    [J]. PHYSICS LETTERS A, 1983, 97 (1-2) : 21 - 23
  • [3] HENON-HEILES HAMILTONIAN
    CHURCHIL.RC
    ROD, DL
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A122 - A122
  • [4] Classifying orbits in the classical Henon-Heiles Hamiltonian system
    Zotos, Euaggelos E.
    [J]. NONLINEAR DYNAMICS, 2015, 79 (03) : 1665 - 1677
  • [5] Integration of a generalized Henon-Heiles Hamiltonian
    Verhoeven, C
    Musette, M
    Conte, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (04) : 1906 - 1915
  • [6] Flow equations for the Henon-Heiles Hamiltonian
    Cremers, D
    Mielke, A
    [J]. PHYSICA D, 1999, 126 (1-2): : 123 - 135
  • [7] Fractal structures in the Henon-Heiles Hamiltonian
    Barrio, R.
    Blesa, F.
    Serrano, S.
    [J]. EPL, 2008, 82 (01)
  • [8] Flow equations for the Henon-Heiles Hamiltonian
    Cremers, Daniel
    Mielke, Andreas
    [J]. Physica D: Nonlinear Phenomena, 1999, 126 (1-2): : 123 - 135
  • [9] BI-HAMILTONIAN STRUCTURE OF AN INTEGRABLE HENON-HEILES SYSTEM
    CABOZ, R
    RAVOSON, V
    GAVRILOV, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (10): : L523 - L525
  • [10] THE HENON-HEILES SYSTEM REVISITED
    FORDY, AP
    [J]. PHYSICA D, 1991, 52 (2-3): : 204 - 210