Statistical classification of chaotic signals

被引:0
|
作者
Couvreur, C [1 ]
Flamme, C [1 ]
Pirlot, M [1 ]
机构
[1] Fac Polytech Mons, Serv Phys Gen, B-7000 Mons, Belgium
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The classification of chaotic signals generated by a low-dimensional deterministic models given a dictionary of possible model is considered. The proposed classification methods rely on the concept of "best predictor" of signal. A statistical interpretation of this concept based on the ergodic theory of chaotic system is presented. A sort of "bootstrapping" estimator of the statistical properties is introduced. The method is validated by numerical simulations. Directions for future research are suggested.
引用
收藏
页码:2149 / 2152
页数:4
相关论文
共 50 条
  • [1] Recognition and classification of nonlinear chaotic signals
    Wright, Jon
    Schult, R. L.
    [J]. CHAOS, 1993, 3 (03) : 295 - 304
  • [2] Efficient classification of chaotic signals with application to secure communications
    Gianfelici, Francesco
    Turchetti, Claudio
    Crippa, Paolo
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1073 - +
  • [3] Introduction to the statistical theory of differential communication based on chaotic signals
    Dmitriev, A. S.
    Ryzhov, A. I.
    Sierra-Teran, C. M.
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (04): : 421 - 438
  • [4] On Statistical Properties of Chaotic Signals Generated by Negative Sawtooth Maps
    A. Sahnoune
    D. Berkani
    [J]. Automatic Control and Computer Sciences, 2022, 56 : 356 - 363
  • [5] On Statistical Properties of Chaotic Signals Generated by Negative Sawtooth Maps
    Sahnoune, A.
    Berkani, D.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2022, 56 (04) : 356 - 363
  • [6] Statistical Comparison of Classification Methods in EEG Signals
    Ekim, Gunes
    Atasoy, Ayten
    Ikizler, Nuri
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [7] Classification of transcranial Doppler signals using their chaotic invariant measures
    Ozturk, Ali
    Arslan, Ahmet
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 86 (02) : 171 - 180
  • [8] Classification of ship-radiated signals via chaotic features
    Yang, S
    Li, ZS
    [J]. ELECTRONICS LETTERS, 2003, 39 (04) : 395 - 397
  • [9] The Sensitivity of the Fractal Spectrum: a Means of Controlling the Statistical Properties of Chaotic Signals
    Ursulean, R.
    Lazar, A. M.
    Istrate, M.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2011, (08) : 21 - 26
  • [10] Deep and Statistical Features Classification Model for Electroencephalography Signals
    Karaduman, Mucahit
    Karci, Ali
    [J]. TRAITEMENT DU SIGNAL, 2022, 39 (05) : 1517 - 1525