Towards Privacy-Preserving Federated Deep Learning infrastructure : proof-of-concept

被引:0
|
作者
Zhang, C. [1 ]
Choudhury, A. [1 ]
Bermejo, I. [1 ]
Dekker, A. [1 ]
机构
[1] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Clin Data Sci,Maastro Clin, Maastricht, Netherlands
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-1116
引用
收藏
页码:S949 / S950
页数:2
相关论文
共 50 条
  • [1] Towards Efficient and Privacy-preserving Federated Deep Learning
    Hao, Meng
    Li, Hongwei
    Xu, Guowen
    Liu, Sen
    Yang, Haomiao
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [2] PFLM: Privacy-preserving federated learning with membership proof
    Jiang, Changsong
    Xu, Chunxiang
    Zhang, Yuan
    [J]. INFORMATION SCIENCES, 2021, 576 : 288 - 311
  • [3] PFLM: Privacy-preserving federated learning with membership proof
    Jiang, Changsong
    Xu, Chunxiang
    Zhang, Yuan
    [J]. Xu, Chunxiang (chxxu@uestc.edu.cn), 1600, Elsevier Inc. (576): : 288 - 311
  • [4] Privacy-preserving Decentralized Federated Deep Learning
    Zhu, Xudong
    Li, Hui
    [J]. PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 33 - 38
  • [5] Towards Fair and Privacy-Preserving Federated Deep Models
    Lyu, Lingjuan
    Yu, Jiangshan
    Nandakumar, Karthik
    Li, Yitong
    Ma, Xingjun
    Jin, Jiong
    Yu, Han
    Ng, Kee Siong
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (11) : 2524 - 2541
  • [6] Practical Federated Learning Infrastructure for Privacy-Preserving Scientific Computing
    Wang, Lesi
    Zhao, Dongfang
    [J]. 2022 IEEE/ACM INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S), 2022, : 38 - 43
  • [7] Privacy-Preserving Federated Deep Learning With Irregular Users
    Xu, Guowen
    Li, Hongwei
    Zhang, Yun
    Xu, Shengmin
    Ning, Jianting
    Deng, Robert H.
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (02) : 1364 - 1381
  • [8] Privacy-Preserving and Robust Federated Deep Metric Learning
    Tian, Yulong
    Ke, Xiaopeng
    Tao, Zeyi
    Ding, Shaohua
    Xu, Fengyuan
    Li, Qun
    Han, Hao
    Zhong, Sheng
    Fu, Xinyi
    [J]. 2022 IEEE/ACM 30TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2022,
  • [9] Privacy-preserving local analysis of digital trace data: A proof-of-concept
    Boeschoten, Laura
    Mendrik, Adrienne
    van der Veen, Emiel
    Vloothuis, Jeroen
    Hu, Haili
    Voorvaart, Roos
    Oberski, Daniel L.
    [J]. PATTERNS, 2022, 3 (03):
  • [10] Towards Efficient and Privacy-Preserving Federated Learning for HMM Training
    Zheng, Yandong
    Zhu, Hui
    Lu, Rongxing
    Zhang, Songnian
    Guan, Yunguo
    Wang, Fengwei
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 38 - 43