POLYNOMIAL REPRESENTATIONS FOR n-TH ROOTS IN FINITE FIELDS

被引:0
|
作者
Chang, Seunghwan [1 ]
Kim, Bihtnara [2 ]
Lee, Hyang-Sook [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
cube roots; n-th roots; finite fields; DISCRETE LOGARITHM; INTERPOLATION; COMPUTATION; MODULO;
D O I
10.4134/JKMS.2015.52.1.209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing square, cube and n-th roots in general, in finite fields, are important computational problems with significant applications to cryptography. One interesting approach to computational problems is by using polynomial representations. Agou, Deleglise and Nicolas proved results concerning the lower bounds for the length of polynomials representing square roots modulo a prime p. We generalize the results by considering n-th roots over finite fields for arbitrary n>2.
引用
收藏
页码:209 / 224
页数:16
相关论文
共 50 条