Experiments with hierarchical text classification

被引:0
|
作者
Granitzer, M [1 ]
Auer, P [1 ]
机构
[1] Know Ctr, Div Knowledge Discovery, A-8010 Graz, Austria
关键词
machine learning; supervised learning; hierarchical text classification; boosting; ranking performance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper applies Boosting to hierarchical text classification where the hierarchical structure is given as directed acyclic graph and compares the results to Support Vector Machines. Hierarchical classification is performed top-down and in each node a flat classifier decides if a document should be further propagated or not. As flat classifiers BoosTexter, CentroidBooster and Support Vector Machines are used, were CentroidBooster is an AdaBoost.MH based alternative similar to BoosTexter. Experiments on the Reuters Corpus Volume 1 and the OHSUMED data set show that the F-1-measure increases if the hierarchal structure of a data set is taken into account. Regarding time complexity we show, that depending on the structure of a hierarchy, learning and classification time can be reduced. Besides these hard classification approaches we also investigate the ranking performance of hierarchical classifiers. Ranking, which can be achieved by providing a meaningful score for each classification decision, is important in most practical settings. We investigate an approach based on using a sigmoid function for calculating a meaningful score, where parameter estimation is based on error bounds from computational learning theory.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [1] Hierarchical text classification
    Pulijala, AK
    Gauch, S
    ISAS/CITSA 2004: International Conference on Cybernetics and Information Technologies, Systems and Applications and 10th International Conference on Information Systems Analysis and Synthesis, Vol 1, Proceedings: COMMUNICATIONS, INFORMATION TECHNOLOGIES AND COMPUTING, 2004, : 257 - 262
  • [2] Experiments with a hierarchical text categorizer
    Tikk, D
    Biró, G
    Yang, JD
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1191 - 1196
  • [3] On Dataless Hierarchical Text Classification
    Song, Yangqiu
    Roth, Dan
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1579 - 1585
  • [4] Hierarchical text classification and evaluation
    Sun, AX
    Lim, EP
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 521 - 528
  • [5] Naive approach for hierarchical text classification
    Wang, Mingwen
    Lu, Xu
    Zhang, Huawei
    Luo, Yuansheng
    Journal of Computational Information Systems, 2007, 3 (04): : 1591 - 1598
  • [6] Hierarchical Label Generation for Text Classification
    Kwon, Jingun
    Kamigaito, Hidetaka
    Song, Young-In
    Okumura, Manabu
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 625 - 632
  • [7] Hierarchical text classification methods and their specification
    Sun, AX
    Lim, EP
    Ng, WK
    COOPERATIVE INTERNET COMPUTING, 2003, 729 : 236 - 256
  • [8] Context Recognition for Hierarchical Text Classification
    Liu, Rey-Long
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2009, 60 (04): : 803 - 813
  • [9] Hierarchical Interpretation of Neural Text Classification
    Yan, Hanqi
    Gui, Lin
    He, Yulan
    COMPUTATIONAL LINGUISTICS, 2022, 48 (04) : 987 - 1020
  • [10] Hierarchical Text Classification Incremental Learning
    Song, Shengli
    Qiao, Xiaofei
    Chen, Ping
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 247 - 258