Thermal transport and electrical properties of Se95-xSn5Bix (x=0, 4, 8) chalcogenide alloys

被引:6
|
作者
Mishra, Pankaj K. [1 ]
Kumar, H. [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, Uttar Pradesh, India
关键词
Transient plane source (TPS); Thermal conductivity; Dielectric loss; AC conductivity; CARRIER-TYPE REVERSAL; AC CONDUCTION; TEMPERATURE-DEPENDENCE; GLASSES; SE; SEMICONDUCTORS; CRYSTALLINE; DIFFUSIVITY;
D O I
10.1016/j.jnoncrysol.2020.120071
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study reports the structural, thermal-transport and electrical properties of the Se95-xSn5Bix (x = 0, 4, 8) chalcogenide alloys. The x-ray diffraction analysis (XRD) reveals the polycrystalline nature of samples. Transmission electron microscopy (TEM) demonstrates the formation of nano-rods and clusters of nano-particles. Differential scanning calorimetry (DSC) of the samples, x = 4&8 indicates, there may be two co-existed phases in these samples. Thermal conductivity (lambda(e)) shows a decreasing trend with the inclusion of Bi in Se-Sn system. Thermal diffusivity (chi(e)) and volumetric heat capacity (QC(p)) show the optimum value for x = 4. Thermal transport parameters remain almost temperature independent. The dielectric constant/loss decreases with frequency and increases with temperature. Maximum dielectric constant/loss is obtained for the un-doped sample, while for doped samples, the values have decreased with Bi content. The strong dependence of conductivity over temperature is explained in terms of non-overlapping small polaron tunneling (NSPT) for undoped and CBH models for Bi doped samples.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] On I–V measurements and high field conduction of (Se80Te20)94−xGe6Bix (0 ≤ x ≤ 12) chalcogenide alloys
    Priyanka Vashist
    Rakesh Sharma
    Balbir Singh Patial
    Nagesh Thakur
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 22821 - 22834
  • [32] ELECTRICAL PROPERTIES OF Se93-X-Zn2-Te5-InX CHALCOGENIDE GLASSES
    Singh, A. K.
    Mehta, N.
    Singh, K.
    CHALCOGENIDE LETTERS, 2009, 6 (01): : 9 - 16
  • [33] Electrical properties of MWCNT-composite (Se80Te20)100-xAgx (0≤x≤4) chalcogenide glasses
    Singh, D.
    Kumar, S.
    Thangaraj, R.
    PHASE TRANSITIONS, 2014, 87 (02) : 148 - 156
  • [34] Temperature and composition dependence of electrical conductivity of Se90In10-xSbx (x=0, 2, 4, 6, 8, 10) chalcogenide glasses
    Jain, Praveen K.
    Saxena, N. S.
    JOURNAL OF NON-OXIDE GLASSES, 2009, 1 (01): : 43 - 52
  • [35] Microstructure and Corrosion Properties of Mg-xSn-5Al-1Zn (x=0, 1, 5 and 9 mass%) Alloys
    Park, Kyung Chul
    Kim, Byeong Ho
    Kimura, Hisamichi
    Park, Yong Ho
    Park, Ik Min
    MATERIALS TRANSACTIONS, 2010, 51 (03) : 472 - 476
  • [36] Effects of Sn in α-Mg matrix on properties of surface films of Mg-xSn (x=0, 2, 5 wt%) alloys
    Yang, J.
    Yim, C. D.
    You, B. S.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2016, 67 (05): : 531 - 541
  • [37] Thermal and electrical properties of Ca5Mg4−xZnx(VO4)6 (0 ≤ x ≤ 4)
    Anna S. Tolkacheva
    Sergey N. Shkerin
    Kirill G. Zemlyanoi
    Olga G. Reznitskikh
    Svetlana V. Pershina
    Pavel D. Khavlyuk
    Journal of Thermal Analysis and Calorimetry, 2019, 136 : 1003 - 1009
  • [38] Thermal and electrical properties of Ca5Mg4-xZnx(VO4)6 (0 ≤ x ≤ 4)
    Tolkacheva, Anna S.
    Shkerin, Sergey N.
    Zemlyanoi, Kirill G.
    Reznitskikh, Olga G.
    Pershina, Svetlana V.
    Khavlyuk, Pavel D.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (03) : 1003 - 1009
  • [39] Structure and Microhardness of (Sn4In)100 –хBix (x = 0–8 аt %) Alloys Produced by High-Speed Cooling
    V. G. Shepelevich
    S. V. Husakova
    O. V. Gusakova
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 1338 - 1344
  • [40] On I-V measurements and high field conduction of (Se80Te20)94-xGe6Bix (0 ≤ x ≤ 12) chalcogenide alloys
    Vashist, Priyanka
    Sharma, Rakesh
    Patial, Balbir Singh
    Thakur, Nagesh
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (29) : 22821 - 22834