On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs

被引:8
|
作者
Phillips, Charles A. [1 ]
Wang, Kai [2 ]
Baker, Erich J. [3 ]
Bubier, Jason A. [4 ]
Chesler, Elissa J. [4 ]
Langston, Michael A. [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
[2] Georgia Southern Univ, Dept Comp Sci, Statesboro, GA 30460 USA
[3] Baylor Univ, Dept Comp Sci, Waco, TX 76798 USA
[4] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
关键词
graph algorithms; multipartite graphs; maximal cliques; dense subgraph enumeration; GENEWEAVER;
D O I
10.3390/a12010023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let k denote an integer greater than 2, let G denote a k-partite graph, and let S denote the set of all maximal k-partite cliques in G. Several open questions concerning the computation of S are resolved. A straightforward and highly-scalable modification to the classic recursive backtracking approach of Bron and Kerbosch is first described and shown to run in O(3(n/3)) time. A series of novel graph constructions is then used to prove that this bound is best possible in the sense that it matches an asymptotically tight upper limit on vertical bar S vertical bar. The task of identifying a vertex-maximum element of S is also considered and, in contrast with the k = 2 case, shown to be NP-hard for every k >= 3. A special class of k-partite graphs that arises in the context of functional genomics and other problem domains is studied as well and shown to be more readily solvable via a polynomial-time transformation to bipartite graphs. Applications, limitations, potentials for faster methods, heuristic approaches, and alternate formulations are also addressed.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On finding k-cliques in k-partite graphs
    M. Mirghorbani
    P. Krokhmal
    Optimization Letters, 2013, 7 : 1155 - 1165
  • [2] On finding k-cliques in k-partite graphs
    Mirghorbani, M.
    Krokhmal, P.
    OPTIMIZATION LETTERS, 2013, 7 (06) : 1155 - 1165
  • [3] Finding all k-cliques in k-partite graphs, an application in textile engineering
    Grünert, T
    Irnich, S
    Zimmermann, HJ
    Schneider, M
    Wulfhorst, B
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (01) : 13 - 31
  • [4] Hamiltonian cycles in k-partite graphs
    DeBiasio, Louis
    Krueger, Robert A.
    Pritikin, Dan
    Thompson, Eli
    JOURNAL OF GRAPH THEORY, 2020, 94 (01) : 92 - 112
  • [5] HAMILTONICITY IN BALANCED K-PARTITE GRAPHS
    CHEN, GT
    FAUDREE, RJ
    GOULD, RJ
    JACOBSON, MS
    LESNIAK, L
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 221 - 231
  • [6] THE MEDIAN PROBLEM ON k-PARTITE GRAPHS
    Pravas, Karuvachery
    Vijayakumar, Ambat
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 439 - 446
  • [7] On degree sets in k-partite graphs
    Naikoo, T. A.
    Samee, U.
    Pirzada, S.
    Rather, Bilal A.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (02) : 251 - 259
  • [8] On k-partite subgraphs
    Hofmeister, T
    Lefmann, H
    ARS COMBINATORIA, 1998, 50 : 303 - 308
  • [9] Chorded Pancyclicity in k-Partite Graphs
    Ferrero, Daniela
    Lesniak, Linda
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1565 - 1580
  • [10] Label Propagation on K-partite Graphs
    Ding, Chris
    Li, Tao
    Wang, Dingding
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 273 - +