Anosov C-systems and random number generators

被引:9
|
作者
Savvidy, G. K. [1 ]
机构
[1] Natl Res Ctr Demokritos, Inst Nucl & Particle Phys, Athens, Greece
基金
欧盟地平线“2020”;
关键词
Anosov C-system; hyperbolic dynamical system; Kolmogorov entropy; Monte Carlo method; high energy physics; elementary particle; lattice quantum chromodynamics; DYNAMICAL-SYSTEMS; METRIC INVARIANT; MECHANICS;
D O I
10.1134/S004057791608002X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
引用
收藏
页码:1155 / 1171
页数:17
相关论文
共 50 条
  • [1] Anosov C-systems and random number generators
    G. K. Savvidy
    Theoretical and Mathematical Physics, 2016, 188 : 1155 - 1171
  • [2] Spectrum and entropy of C-systems MIXMAX random number generator
    Savvidy, Konstantin
    Savvidy, George
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 33 - 38
  • [3] A taxonomy of C-systems
    Carnielli, WA
    Marcos, J
    PARACONSISTENCY: THE LOGICAL WAY TO THE INCONSISTENT, 2002, 228 : 1 - 94
  • [4] RANDOM NUMBER GENERATORS
    ERMAKOV, SM
    INDUSTRIAL LABORATORY, 1993, 59 (07): : 701 - 705
  • [6] RANDOM NUMBER GENERATORS
    HULL, TE
    DOBELL, AR
    SIAM REVIEW, 1962, 4 (03) : 230 - +
  • [7] LAWVERE THEORIES AND C-SYSTEMS
    Fiore, Marcelo
    Voevodsky, Vladimir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (06) : 2297 - 2315
  • [8] B-SYSTEMS AND C-SYSTEMS ARE EQUIVALENT
    Ahrens, Benedikt
    Emmenegger, Jacopo
    North, Paige randall
    Rijke, Egbert
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (04) : 1513 - 1521
  • [9] Subsystems and regular quotients of C-systems
    Voevodsky, Vladimir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 127 - 137
  • [10] Utilization of the Discrete Chaotic Systems as the Pseudo Random Number Generators
    Senkerik, Roman
    Pluhacek, Michal
    Zelinka, Ivan
    Oplatkova, Zuzana Kominkova
    MODERN TRENDS AND TECHNIQUES IN COMPUTER SCIENCE (CSOC 2014), 2014, 285 : 155 - 164