The nature of self-regulation in photosynthetic light-harvesting antenna

被引:1
|
作者
Chmeliov, Jevgenij [1 ,2 ]
Gelzinis, Andrius [1 ,2 ]
Songaila, Egidijus [2 ]
Augulis, Ramunas [2 ]
Duffy, Christopher D. P. [3 ]
Ruban, Alexander V. [3 ]
Valkunas, Leonas [1 ,2 ]
机构
[1] Vilnius Univ, Fac Phys, Dept Theoret Phys, Sauletekio Ave 9, LT-10222 Vilnius, Lithuania
[2] Ctr Phys Sci & Technol, Dept Mol Compound Phys, Sauletekio Ave 3, LT-10222 Vilnius, Lithuania
[3] Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
EXCITATION-ENERGY TRANSFER; EXCITED-STATE KINETICS; PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE; CHARGE SEPARATION; COMPLEX; LHCII; PHOTOPROTECTION; MEMBRANES; PROTEINS;
D O I
10.1038/NPLANTS.2016.45
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of 'burning out' the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at similar to 700 nm, with the partial mixing of excitonic and chlorophyll-chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] The nature of self-regulation in photosynthetic light-harvesting antenna
    Jevgenij Chmeliov
    Andrius Gelzinis
    Egidijus Songaila
    Ramūnas Augulis
    Christopher D. P. Duffy
    Alexander V. Ruban
    Leonas Valkunas
    Nature Plants, 2 (5)
  • [2] Light-harvesting processes in the dynamic photosynthetic antenna
    Duffy, C. D. P.
    Valkunas, L.
    Ruban, A. V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (43) : 18752 - 18770
  • [3] Biohybrid Photosynthetic Antenna Complexes for Enhanced Light-Harvesting
    Springer, Joseph W.
    Parkes-Loach, Pamela S.
    Reddy, Kanumuri Ramesh
    Krayer, Michael
    Jiao, Jieying
    Lee, Gregory M.
    Niedzwiedzki, Dariusz M.
    Harris, Michelle A.
    Kirmaier, Christine
    Bocian, David F.
    Lindsey, Jonathan S.
    Holten, Dewey
    Loach, Paul A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) : 4589 - 4599
  • [4] Photosynthetic light-harvesting
    vanGrondelle, R
    Monshouwer, R
    Valkunas, L
    PURE AND APPLIED CHEMISTRY, 1997, 69 (06) : 1211 - 1218
  • [5] Photosynthetic light-harvesting
    vanGrondelle, R
    Monshouwer, R
    Valkunas, L
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1996, 100 (12): : 1950 - 1957
  • [6] REGULATION OF CYANOBACTERIAL LIGHT-HARVESTING ANTENNA DEVELOPMENT
    Manodori, A.
    Oguist, G.
    Melis, A.
    PLANT PHYSIOLOGY, 1984, 75 : 91 - 91
  • [7] Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes
    Tang, Kuo-Hsiang
    Blankenship, Robert E.
    PHOTOSYNTHESIS RESEARCH, 2012, 111 (1-2) : 205 - 217
  • [8] Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes
    Kuo-Hsiang Tang
    Robert E. Blankenship
    Photosynthesis Research, 2012, 111 : 205 - 217
  • [9] Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions
    Lokstein, Heiko
    Renger, Gernot
    Goetze, Jan P.
    MOLECULES, 2021, 26 (11):
  • [10] Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra
    Arp, Trevor B.
    Kistner-Morris, Jed
    Aji, Vivek
    Cogdell, Richard J.
    van Grondelle, Rienk
    Gabor, Nathaniel M.
    SCIENCE, 2020, 368 (6498) : 1490 - +