On the fusion of threshold classifiers for categorization and dimensionality reduction

被引:18
|
作者
Kestler, Hans A. [1 ,2 ]
Lausser, Ludwig [2 ]
Lindner, Wolfgang [2 ]
Palm, Guenther [1 ]
机构
[1] Univ Ulm, Inst Neural Informat Proc, D-89069 Ulm, Germany
[2] Univ Hosp Ulm, D-89081 Ulm, Germany
关键词
Feature reduction; Threshold classifiers; High dimensional data; MOLECULAR CLASSIFICATION; LEARNING ALGORITHMS; PREDICTION; CANCER; COMPRESSION; TUMOR;
D O I
10.1007/s00180-011-0243-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study ensembles of simple threshold classifiers for the categorization of high-dimensional data of low cardinality and give a compression bound on their prediction risk. Two approaches are utilized to produce such classifiers. One is based on univariate feature selection employing the area under the ROC curve as ranking criterion. The other approach uses a greedy selection strategy. The methods are applied to artificial data, published microarray expression profiles, and highly imbalanced data.
引用
收藏
页码:321 / 340
页数:20
相关论文
共 50 条
  • [1] On the fusion of threshold classifiers for categorization and dimensionality reduction
    Hans A. Kestler
    Ludwig Lausser
    Wolfgang Lindner
    Günther Palm
    [J]. Computational Statistics, 2011, 26 : 321 - 340
  • [2] Ensembles of classifiers based on dimensionality reduction
    Schclar, Alon
    Rokach, Lior
    Amit, Amir
    [J]. INTELLIGENT DATA ANALYSIS, 2017, 21 (03) : 467 - 489
  • [3] Discriminative Dimensionality Reduction for the Visualization of Classifiers
    Gisbrecht, Andrej
    Schulz, Alexander
    Hammer, Barbara
    [J]. PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2013, 2015, 318 : 39 - 56
  • [4] Prediction of Protein Folds: Extraction of New Features, Dimensionality Reduction, and Fusion of Heterogeneous Classifiers
    Ghanty, Pradip
    Pal, Nikhil R.
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2009, 8 (01) : 100 - 110
  • [5] Using Nonlinear Dimensionality Reduction to Visualize Classifiers
    Schulz, Alexander
    Gisbrecht, Andrej
    Hammer, Barbara
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I, 2013, 7902 : 59 - 68
  • [6] Using Discriminative Dimensionality Reduction to Visualize Classifiers
    Alexander Schulz
    Andrej Gisbrecht
    Barbara Hammer
    [J]. Neural Processing Letters, 2015, 42 : 27 - 54
  • [7] EFFICIENT SUPERVISED DIMENSIONALITY REDUCTION FOR IMAGE CATEGORIZATION
    Benmokhtar, Rachid
    Delhumeau, Jonathan
    Gosselin, Philippe-Henri
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2425 - 2428
  • [8] Dimensionality reduction by semantic mapping in text categorization
    Corrêa, RF
    Ludermir, TB
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 1032 - 1037
  • [9] Using Discriminative Dimensionality Reduction to Visualize Classifiers
    Schulz, Alexander
    Gisbrecht, Andrej
    Hammer, Barbara
    [J]. NEURAL PROCESSING LETTERS, 2015, 42 (01) : 27 - 54
  • [10] Dimensionality Reduction with Category Information Fusion and Non-negative Matrix Factorization for Text Categorization
    Zheng, Wenbin
    Qian, Yuntao
    Tang, Hong
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III, 2011, 7004 : 505 - +