An iterative algorithm for a system of generalized implicit variational inclusions

被引:8
|
作者
Ahmad, Iqbal [1 ]
Mishra, Vishnu Narayan [2 ]
Ahmad, Rais [1 ]
Rahaman, Mijanur [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Sardar Vallabhbhai Natl Inst Technol, Appl Math & Humanties Dept, Ichchhanath Mahadev Dumas Rd, Surat 395007, India
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Relaxed; Algorithm; Solution; Convergence; System; Resolvent; (H; ETA)-MONOTONE OPERATORS; HILBERT-SPACES; BANACH-SPACES; INEQUALITIES; EXISTENCE;
D O I
10.1186/s40064-016-2916-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a system of generalized implicit variational inclusions which consists of three variational inclusions. We design an iterative algorithm with error terms based on relaxed resolvent operator due to Ahmad et al. (Stat Optim Inf Comput 4:183-193, 2016) for approximating the solution of our system. The convergence of the iterative sequences generated by the iterative algorithm is also discussed. An example is given which satisfy all the conditions of our main result.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Iterative algorithm for a new system of generalized variational inclusions
    Yang, Yong-Qin
    Jin, Mao-Ming
    Li, Han-Ping
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 1198 - +
  • [2] Convergence and stability of an iterative algorithm for a system of generalized implicit variational-like inclusions in Banach spaces
    Kazmi, K. R.
    Ahmad, Naeem
    Shahzad, Mohammad
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9208 - 9219
  • [3] An iterative algorithm for generalized nonlinear variational inclusions
    Ahmad, R
    Ansari, QH
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (05) : 23 - 26
  • [4] An iterative algorithm based on M-proximal mappings for a system of generalized implicit variational inclusions in Banach spaces
    Kazmi, K. R.
    Bhat, M. I.
    Ahmad, Naeem
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 361 - 371
  • [5] A GENERAL VISCOSITY IMPLICIT ITERATIVE ALGORITHM FOR SPLIT VARIATIONAL INCLUSIONS WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS
    Ceng, L. C.
    Coroian, I
    Qin, X.
    Yao, J. C.
    [J]. FIXED POINT THEORY, 2019, 20 (02): : 469 - 482
  • [6] A New Perturbed Iterative Algorithm with Mixed Errors for Solving System of Generalized Nonlinear Variational Inclusions
    Petrot, Narin
    Balooee, Javad
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) : 82 - 98
  • [7] Iterative algorithm for a system of nonlinear variational-like inclusions
    Kazmi, KR
    Bhat, MI
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (12) : 1929 - 1935
  • [8] Convergence and stability of iterative algorithm for a new system of variational inclusions
    Liao, Zheng-Qi
    Jin, Mao-Ming
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 915 - +
  • [9] AN ITERATIVE ALGORITHM FOR EXTENDED GENERALIZED NONLINEAR VARIATIONAL INCLUSIONS FOR RANDOM FUZZY MAPPINGS
    Dar, A. H.
    Sarfaraz, Mohd.
    Ahmad, M. K.
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (01): : 129 - 141
  • [10] An iterative algorithm for random generalized nonlinear mixed variational inclusions for random fuzzy mappings
    Ahmad, R
    Bazán, FF
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) : 1400 - 1411