Approximate Data Aggregation in Sensor Equipped IoT Networks

被引:24
|
作者
Li, Ji [1 ]
Siddula, Madhuri [2 ]
Cheng, Xiuzhen [4 ]
Cheng, Wei [5 ]
Tian, Zhi [6 ]
Li, Yingshu [3 ]
机构
[1] Kennesaw State Univ, Coll Comp & Software Engn, Marietta, GA 30060 USA
[2] Georgia State Univ, Atlanta, GA 30303 USA
[3] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[4] George Washington Univ, Dept Comp Sci, Washington, DC 20052 USA
[5] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA
[6] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
data aggregation; sampling; Internet-of-Things (IoT) networks; DATA-COLLECTION; INFERENCE;
D O I
10.26599/TST.2019.9010023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As Internet-of-Things (IoT) networks provide efficient ways to transfer data, they are used widely in data sensing applications. These applications can further include wireless sensor networks. One of the critical problems in sensor-equipped IoT networks is to design energy efficient data aggregation algorithms that address the issues of maximum value and distinct set query. In this paper, we propose an algorithm based on uniform sampling and Bernoulli sampling to address these issues. We have provided logical proofs to show that the proposed algorithms return accurate results with a given probability. Simulation results show that these algorithms have high performance compared with a simple distributed algorithm in terms of energy consumption.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [1] Approximate Data Aggregation in Sensor Equipped IoT Networks
    Ji Li
    Madhuri Siddula
    Xiuzhen Cheng
    Wei Cheng
    Zhi Tian
    Yingshu Li
    [J]. Tsinghua Science and Technology, 2020, 25 (01) : 44 - 55
  • [2] Sampling Based δ-Approximate Data Aggregation in Sensor Equipped IoT Networks
    Li, Ji
    Siddula, Madhuri
    Cheng, Xiuzhen
    Cheng, Wei
    Tian, Zhi
    Li, Yingshu
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2018), 2018, 10874 : 249 - 260
  • [3] Sampling-Based Approximate Skyline Query in Sensor Equipped IoT Networks
    Li, Ji
    Sai, Akshita Maradapu Vera Venkata
    Cheng, Xiuzhen
    Cheng, Wei
    Tian, Zhi
    Li, Yingshu
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (02) : 219 - 229
  • [4] Sampling-Based Approximate Skyline Query in Sensor Equipped IoT Networks
    Ji Li
    Akshita Maradapu Vera Venkata Sai
    Xiuzhen Cheng
    Wei Cheng
    Zhi Tian
    Yingshu Li
    [J]. Tsinghua Science and Technology, 2021, 26 (02) : 219 - 229
  • [5] A survey on data aggregation techniques in IoT sensor networks
    Dehkordi, Soroush Abbasian
    Farajzadeh, Kamran
    Rezazadeh, Javad
    Farahbakhsh, Reza
    Sandrasegaran, Kumbesan
    Dehkordi, Masih Abbasian
    [J]. WIRELESS NETWORKS, 2020, 26 (02) : 1243 - 1263
  • [6] A survey on data aggregation techniques in IoT sensor networks
    Soroush Abbasian Dehkordi
    Kamran Farajzadeh
    Javad Rezazadeh
    Reza Farahbakhsh
    Kumbesan Sandrasegaran
    Masih Abbasian Dehkordi
    [J]. Wireless Networks, 2020, 26 : 1243 - 1263
  • [7] Approximate aggregation algorithm for weighted data in wireless sensor networks
    Zheng, Xu
    Li, Jian-Zhong
    [J]. Ruan Jian Xue Bao/Journal of Software, 2012, 23 (SUPPL.): : 108 - 119
  • [8] SADA : Secure Approximate Data Aggregation in Wireless Sensor Networks
    Prathima, G. E.
    Prakash, Shiva T.
    Venugopal, K. R.
    Iyengar, S. S.
    Patnaik, L. M.
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON DATA SCIENCE & ENGINEERING (ICDSE), 2016, : 46 - 51
  • [9] Secure Data Aggregation Scheme in Wireless Sensor Networks for IoT
    Alghamdi, Ahmed
    Alshamrani, Mesfar
    Alqahtani, Abdullah
    Al Ghamdi, Sultan Safar A.
    Harrathi, Rami
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC), 2016,
  • [10] Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks
    Vo, Van-Vi
    Le, Duc-Tai
    Raza, Syed M.
    Kim, Moonseong
    Choo, Hyunseung
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13199 - 13216