Self-Regenerating Soft Biophotovoltaic Devices

被引:18
|
作者
Qiu, Xinkai [1 ,2 ]
Ocampo, Olga Castaneda [1 ,2 ]
de Vries, Hendrik W. [1 ]
van Putten, Maikel [1 ]
Loznik, Mark [1 ]
Herrmann, Andreas [1 ,3 ,4 ]
Chiechi, Ryan C. [1 ,2 ]
机构
[1] Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Stratingh Inst Chem, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[3] Rhein Westfal TH Aachen, Inst Tech & Macromol Chem, Worringerweg 2, D-52074 Aachen, Germany
[4] DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52056 Aachen, Germany
关键词
photosystem I; self-assembly; EGaIn; microfluidics; cofabrication; stretchable photovoltaics; PHOTOSYSTEM-I; MICROFLUIDIC DEVICES; WAVE-GUIDES; ARRAYS; METAL; POLY(DIMETHYLSILOXANE); ELECTRONICS; FABRICATION; FIELD; CHIP;
D O I
10.1021/acsami.8b11115
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photo current from photosystem I (PSI) complexes that are self assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 10(6) compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms.
引用
收藏
页码:37625 / 37633
页数:9
相关论文
共 50 条
  • [1] Self-regenerating filter
    Baranov, DA
    Danilov, NV
    [J]. CHEMICAL AND PETROLEUM ENGINEERING, 2001, 37 (7-8) : 353 - 357
  • [2] Self-Regenerating Filter
    D. A. Baranov
    N. V. Danilov
    [J]. Chemical and Petroleum Engineering, 2001, 37 : 353 - 357
  • [3] Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
    Shiroma, Letcia S.
    Piazzetta, Maria H. O.
    Duarte-Junior, Gerson F.
    Coltro, Wendell K. T.
    Carrilho, Emanuel
    Gobbi, Angelo L.
    Lima, Renato S.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [4] Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
    Letícia S. Shiroma
    Maria H. O. Piazzetta
    Gerson F. Duarte-Junior
    Wendell K. T. Coltro
    Emanuel Carrilho
    Angelo L. Gobbi
    Renato S. Lima
    [J]. Scientific Reports, 6
  • [5] Design for a self-regenerating organisation
    Geoghegan, Michael C.
    Pangaro, Paul
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2009, 38 (02) : 155 - 173
  • [6] SELF-REGENERATING FIBEROPTIC SENSORS
    WALT, DR
    AGAYN, V
    HENLEY, B
    [J]. IMMUNOANALYSIS OF AGROCHEMICALS: EMERGING TECHNOLOGIES, 1995, 586 : 186 - 196
  • [7] A self-regenerating electrocaloric cooler
    Wang, Yunda
    Schwartz, David
    Kalb, Jamie
    Lee, Joseph
    [J]. THERMAG VIII - INTERNATIONAL CONFERENCE ON CALORIC COOLING, 2018, : 143 - 148
  • [8] Resistance to β-lactams, a self-regenerating problem
    Aszodi, J
    Bryskier, A
    [J]. NOVEL FRONTIERS IN THE PRODUCTION OF COMPOUNDS FOR BIOMEDICAL USE, VOL 1, 2001, 1 : 57 - 83
  • [9] A partially self-regenerating synthetic cell
    Lavickova, Barbora
    Laohakunakorn, Nadanai
    Maerkl, Sebastian J.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Separation of suspensions in a self-regenerating filter
    Baranov, DA
    [J]. CHEMICAL AND PETROLEUM ENGINEERING, 2003, 39 (7-8) : 446 - 449