Selection of Compressed Training Data for RF Power Amplifier Behavioral Modeling

被引:0
|
作者
Wang, Ziming [1 ]
Dooley, John [1 ]
Finnerty, Keith [1 ]
Farrell, Ronan [1 ]
机构
[1] Natl Univ Ireland Maynooth, Dept Elect Engn, Maynooth, Kildare, Ireland
关键词
Digital Predistortion; Behavioural Modelling; Least Square; Probability Distribution;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present an algorithm which uses the probability information of the input signal to inform the selection of a compressed training dataset for RF PA behavioural model extraction. The proposed algorithm can dramatically reduce the number of training samples. The accuracy of this algorithm is validated by extraction of behavioural models using a large dataset of consecutive samples and a reduced training dataset determined using the proposed algorithm. A noticeable reduction in computational complexity and faster execution time is achieved with the new approach.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 50 条
  • [1] Models with memory for RF power amplifier behavioral modeling
    Chen X.
    Xiao Y.
    Han H.
    Chang J.
    Tang N.
    International Journal of Performability Engineering, 2019, 15 (08) : 2091 - 2099
  • [2] RF Power Amplifier Behavioral Modeling using Wavelet Multiresolution
    Mateo, Carlos
    Luis Carro, Pedro
    Garcia, Paloma
    de Mingo, Jesus
    2015 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), 2015, : 68 - 70
  • [3] RF power amplifier behavioral modeling using Volterra expansion with Laguerre functions
    Zhu, AD
    Brazil, TJ
    2005 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-4, 2005, : 963 - 966
  • [4] RF power amplifier behavioral modeling using a globally recurrent neural network
    O'Brien, Bill
    Dooley, John
    Brazil, Thomas J.
    2006 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-5, 2006, : 1089 - +
  • [5] RF Power Amplifier Behavioral Modeling Based on Takenaka–Malmquist–Volterra Series
    Ricardo Schumacher
    Eduardo G. Lima
    Gustavo H. C. Oliveira
    Circuits, Systems, and Signal Processing, 2016, 35 : 2298 - 2316
  • [6] Pade-Approximation Based Behavioral Modeling for RF Power Amplifier Design
    Wilson, Ciaran
    Zhu, Anding
    Cai, Jialin
    King, Justin B.
    IEEE ACCESS, 2021, 9 : 18904 - 18914
  • [7] RF Power Amplifier Behavioral Modeling Based on Takenaka-Malmquist-Volterra Series
    Schumacher, Ricardo
    Lima, Eduardo G.
    Oliveira, Gustavo H. C.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (07) : 2298 - 2316
  • [8] Behavioral Modeling of Envelope Tracking Power Amplifier using Volterra Series Model and Compressed Sampling
    Khalifa, Mohamed O. H.
    Abdelhafiz, Abubaker
    Kwan, Andrew
    Ghannouchi, Fadhel M.
    Hammi, Oualid
    2015 IEEE INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2015), 2015,
  • [9] Parameter Extraction and Performance Evaluation Method for Increased Performance in RF Power Amplifier Behavioral Modeling
    Landin, Per N.
    Isaksson, Magnus
    Handel, Peter
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2010, 20 (02) : 200 - 208
  • [10] Physically Inspired Neural Network Model for RF Power Amplifier Behavioral Modeling and Digital Predistortion
    Mkadem, Farouk
    Boumaiza, Slim
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (04) : 913 - 923