Slow-Release of Curcumin Induced by Core-Shell Mesoporous Silica Nanoparticles (MSNs) Modified MIL-100(Fe) Composite

被引:10
|
作者
Faaizatunnisa, Nuhaa [1 ]
Lestari, Witri Wahyu [1 ]
Saputra, Ozi Adi [2 ]
Saraswati, Teguh Endah [1 ]
Larasati, Larasati [2 ]
Wibowo, Fajar Rakhman [1 ]
机构
[1] Univ Sebelas Maret, Fac Math & Nat Sci, Dept Chem, Jl Ir Sutami 36 A Kentingan, Jebres 57126, Surakarta, Indonesia
[2] Univ Sebelas Maret, Fac Math & Nat Sci, Master Program Chem, Jl Ir Sutami 36 A Kentingan, Jebres 57126, Surakarta, Indonesia
关键词
Bio-MOF; Curcumin; Drug delivery; Mesoporous silica; MIL-100(Fe); Slow-release; METAL-ORGANIC FRAMEWORK; PERSPECTIVES; DEGRADATION; ANTICANCER; DELIVERY;
D O I
10.1007/s10904-022-02230-2
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
As a biocompatible porous material, bio-MOF is a very promising material as a carrier for hydrophobic drugs, including curcumin. However, the stability of bio-MOF against water and humidity still needs to be improved; therefore, surface modifications are required. This study aims to modify the MIL-100(Fe)-based bio-MOF through core-shell architecture by employing mesoporous silica nanoparticles (MSNs or SiO2) for improving the stability and performance of MIL-100(Fe) to provide a slow-release feature of curcumin. The composites were synthesized via sonochemistry-assisted or mechanochemistry-assisted green protocol to form core-shell structure of MIL-100(Fe)@SiO2 (Composite-1) or SiO2@MIL-100(Fe) (Composite-2). Structural, textural, and morphological analyses, including XRD, FTIR, SEM, TEM, and N-2 adsorption-desorption, are discussed in this study to evaluate the composite formation. BET surface area of the MIL-100(Fe) decreased from 1197.45 m(2)/g to 565.63 and 823.70 m(2)/g after forming composite-1 and composite-2 with SiO2. The loading capacity, however, just increased slightly up to 97.89% after the modification. The presence of SiO2 as shell (composite-1) protects the MIL-100(Fe) from degradation under the acidic condition at pH 5.8 and can maintain the slow-release of curcumin. In contrast, the presence of SiO2 as core (composite-2) induces the sustained release due to faster degradation of MIL-100(Fe) in acidic condition. Both composites serve as a model for either sustained release or delayed release drug delivery systems.
引用
收藏
页码:1744 / 1754
页数:11
相关论文
共 36 条
  • [1] Slow-Release of Curcumin Induced by Core–Shell Mesoporous Silica Nanoparticles (MSNs) Modified MIL-100(Fe) Composite
    Nuhaa Faaizatunnisa
    Witri Wahyu Lestari
    Ozi Adi Saputra
    Teguh Endah Saraswati
    Larasati Larasati
    Fajar Rakhman Wibowo
    Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32 : 1744 - 1754
  • [2] Modification of dry-gel synthesized MIL-100(Fe) with carboxymethyl cellulose for curcumin slow-release
    Amalia, Amalia
    Lestari, Witri Wahyu
    Pratama, Jeesica Hermayanti
    Wibowo, Fajar Rakhman
    Larasati, Larasati
    Saraswati, Teguh Endah
    JOURNAL OF POLYMER RESEARCH, 2022, 29 (11)
  • [3] Modification of dry-gel synthesized MIL-100(Fe) with carboxymethyl cellulose for curcumin slow-release
    Amalia Amalia
    Witri Wahyu Lestari
    Jeesica Hermayanti Pratama
    Fajar Rakhman Wibowo
    Larasati Larasati
    Teguh Endah Saraswati
    Journal of Polymer Research, 2022, 29
  • [4] Core-shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin
    Kim, Sanghoon
    Diab, Roudayna
    Joubert, Olivier
    Canilho, Nadia
    Pasc, Andreea
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 140 : 161 - 168
  • [5] Synthesis of bio-based MIL-100(Fe)@CNF-SA composite hydrogel and its application in slow-release N-fertilizer
    Guo, Lizhen
    Wang, Yuqi
    Wang, Meng
    Shaghaleh, Hiba
    Hamoud, Yousef Alhaj
    Xu, Xu
    Liu, He
    JOURNAL OF CLEANER PRODUCTION, 2021, 324
  • [6] Hierarchical Mesoporous Organosilica-Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release
    Luo, Leilei
    Liang, Yucang
    Erichsen, Egil Severin
    Anwander, Reiner
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (28) : 7200 - 7209
  • [7] cRGD-modified core-shell mesoporous silica@BSA nanoparticles for drug delivery
    Yu, Lili
    Yao, Lin
    Yang, Kuan
    Fei, Wenling
    Chen, Qingqing
    Qin, Lan
    Liu, Shaojing
    Cao, Min
    Liu, Qian
    Qin, Bei
    POLYMER BULLETIN, 2022, 79 (12) : 10555 - 10571
  • [8] Encapsulating Pt Nanoparticles through Transforming Fe3O4 into MIL-100(Fe) for Well-Defined Fe3O4@Pt@MIL-100(Fe) Core-Shell Heterostructures with Promoting Catalytic Activity
    Chen, Xi
    Zhang, Yanshuang
    Zhao, Yihu
    Wang, Shan
    Liu, Lingzhi
    Xu, Wenyuan
    Guo, Zanru
    Wang, Shaohui
    Liu, Yongxin
    Zhang, Jiali
    INORGANIC CHEMISTRY, 2019, 58 (18) : 12433 - 12440
  • [9] Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance
    Ke, Fei
    Zhu, Junfa
    Qiu, Ling-Guang
    Jiang, Xia
    CHEMICAL COMMUNICATIONS, 2013, 49 (13) : 1267 - 1269
  • [10] Release and antimicrobial activity of levofloxacin from composite mats of poly(E⟩-caprolactone) and mesoporous silica nanoparticles fabricated by core-shell electrospinning
    Jalvandi, Javid
    White, Max
    Truong, Yen Bach
    Gao, Yuan
    Padhye, Rajiv
    Kyratzis, Ilias Louis
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (24) : 7967 - 7974