An EM Estimation Approach for Analyzing Bivariate Skew Normal Data with Non monotone Missing Values

被引:11
|
作者
Baghfalaki, T. [1 ]
Ganjali, M. [1 ]
机构
[1] Shahid Beheshti Univ, Dept Stat, Tehran, Iran
关键词
Bootstrap; EM algorithm; Non monotone missingness; Skew normal distribution; PATTERN-MIXTURE MODELS; INCOMPLETE DATA; REGRESSION-MODELS; DISTRIBUTIONS; ALGORITHM; LIKELIHOOD; INFERENCE;
D O I
10.1080/03610921003637454
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, an EM algorithm approach to obtain the maximum likelihood estimates of parameters for analyzing bivariate skew normal data with non monotone missing values is presented. A simulation study is implemented to investigate the performance of the presented algorithm. Results of an application are also reported where a Bootstrap approach is used to find the variances of the parameter estimates.
引用
收藏
页码:1671 / 1686
页数:16
相关论文
共 50 条