OPERATOR FRACTIONAL BROWNIAN MOTION AS LIMIT OF POLYGONAL LINES PROCESSES IN HILBERT SPACE

被引:11
|
作者
Rackauskas, Alfredas [1 ,2 ]
Suquet, Charles [3 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-2006 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
[3] Univ Lille 1, CNRS, Lab P Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
Fractional Brownian motion; Hilbert space; functional central limit theorem; long memory; linear processes;
D O I
10.1142/S0219493711003152
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study long memory phenomenon of functional time series. We consider an operator fractional Brownian motion with values in a Hilbert space defined via operator-valued Hurst coefficient. We prove that this process is a limiting one for polygonal lines constructed from partial sums of time series having space varying long memory.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 50 条