WDVV equations: symbolic computations of Hamiltonian operators

被引:0
|
作者
Vasicek, Jakub [1 ]
Vitolo, Raffaele [2 ,3 ]
机构
[1] Silesian Univ, Math Inst, Opava, Czech Republic
[2] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy
关键词
WDVV equations; Hamiltonian operators; Schouten bracket; Symbolic computations; Integro-differential operators; Weakly nonlocal operators; ASSOCIATIVITY EQUATIONS;
D O I
10.1007/s00200-022-00565-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe software for symbolic computations that we developed in order to find Hamiltonian operators for Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations, and verify their compatibility. The computation involves nonlocal (integro-differential) operators, for which specific canonical forms and algorithms have been used.
引用
收藏
页码:915 / 934
页数:20
相关论文
共 50 条
  • [1] WDVV equations: symbolic computations of Hamiltonian operators
    Jakub Vašíček
    Raffaele Vitolo
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33 : 915 - 934
  • [2] On the Bi-Hamiltonian Geometry of WDVV Equations
    Maxim V. Pavlov
    Raffaele F. Vitolo
    [J]. Letters in Mathematical Physics, 2015, 105 : 1135 - 1163
  • [3] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163
  • [4] WDVV equations and invariant bi-Hamiltonian formalism
    Vasicek, J.
    Vitolo, R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [5] WDVV equations and invariant bi-Hamiltonian formalism
    J. Vašíček
    R. Vitolo
    [J]. Journal of High Energy Physics, 2021
  • [6] Alternative bi-Hamiltonian structures for WDVV equations of associativity
    Kalayci, J
    Nutku, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 723 - 734
  • [7] Alternative bi-Hamiltonian structures for WDVV equations of associativity
    Kalayci, J.
    Nutku, Y.
    [J]. Journal of Physics A: Mathematical and General, 31 (02):
  • [8] WDVV equations
    Magri, F.
    [J]. NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2015, 38 (05):
  • [9] Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations
    Dubrovin, B. A.
    Pavlov, M. V.
    Zykov, S. A.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2011, 45 (04) : 278 - 290
  • [10] Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations
    B. A. Dubrovin
    M. V. Pavlov
    S. A. Zykov
    [J]. Functional Analysis and Its Applications, 2011, 45 : 278 - 290