Solar hybrid photo-thermochemical sulfur-ammonia water-splitting cycle: Photocatalytic hydrogen production stage

被引:22
|
作者
Vagia, Ekaterini Ch. [1 ]
Muradov, Nazim [3 ]
Kalyva, Agni [1 ]
T-Raissi, Ali [2 ]
Qin, Nan [2 ]
Srinivasa, Arun R. [3 ]
Kakosimos, Konstantinos E. [1 ]
机构
[1] Texas A&M Univ Qatar, Chem Engn Dept, Sustainable Energy & Clean Air Res Lab, SECAReLab, POB 23874, Doha, Qatar
[2] Univ Cent Florida, Florida Solar Energy Ctr, Cocoa, FL 32922 USA
[3] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
关键词
Solar; Hydrogen; Water splitting cycle; Cadmium sulfide; Zinc sulfide; Cocatalyst; VISIBLE-LIGHT ILLUMINATION; CDS; NANOPARTICLES; GENERATION; EVOLUTION; HETEROSTRUCTURES; NANOCRYSTALS; ZNS;
D O I
10.1016/j.ijhydene.2017.06.210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the main limitations of existing solar thermochemical water-splitting cycles (WSC) are that they utilize only thermal component of the solar irradiation neglecting its photonic component. A new hybrid photo-thermochemical sulfur ammonia (HySA) WSC developed at the Florida Solar Energy Center allows circumventing this shortcoming. In the HySA cycle, water splitting occurs by means of solar beam splitting which enables utilization of the quantum (UV-Vis) portion of the solar spectrum in the hydrogen production stage and the thermal (IR) portion in the oxygen production stage. Present work investigates the photocatalytic hydrogen production step using narrow band gap CdS and CdS-ZnS composite photocatalysts, and ammonium sulfite as an electron donor. The choice of the electron donor was determined by the considerations of its regenerability in the thermal stages of the HySA cycle. This article examines the impact of photocatalyst and cocatalystloading, temperature, and light intensity on hydrogen production rates. Photocatalysts, cocatalysts and photoreaction products were analyzed by a number of materials characterization (XRD, SEM, TEM, EDS) and analytical (GC and IC) methods. The experimental data obtained provide guidance for the improved solar photoreactor design. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20608 / 20624
页数:17
相关论文
共 50 条
  • [1] Investigation of the Solar Hybrid Photo-Thermochemical Sulfur-Ammonia Water Splitting Cycle for Hydrogen Production
    Kalyva, Agni E.
    Vagia, Ekaterini Ch
    Konstandopoulos, Athanasios G.
    Srinivasa, Arun R.
    T-Raissi, Ali
    Muradov, Nazim
    Kakosimos, Konstantinos E.
    [J]. PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 361 - 366
  • [2] Efficiency of the sulfur-ammonia solar thermochemical water splitting cycle for the production of hydrogen
    Huang, Cunping
    T-Raissi, Ali
    Muradov, Nazim
    [J]. WMSCI 2007 : 11TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, POST CONFERENCE ISSUE, PROCEEDINGS, 2007, : 338 - 346
  • [3] Hybrid photo-thermal sulfur-ammonia water splitting cycle: Thermodynamic analysis of the thermochemical steps
    Kalyva, A. E.
    Vagia, E. Ch.
    Konstandopoulos, A. G.
    Srinivasa, A. R.
    T-Raissi, A.
    Muradov, N.
    Kakosimos, K. E.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 9533 - 9544
  • [4] Chemical plant analysis of hydrogen production based on the hybrid sulfur-ammonia water splitting cycle
    [J]. Kakosimos, Konstantinos E. (k.kakosimos@qatar.tamu.edu), 2017, Italian Association of Chemical Engineering - AIDIC (61):
  • [5] A novel photo-thermochemical cycle of water-splitting for hydrogen production based on TiO2-x/TiO2
    Zhang, Yanwei
    Chen, Jingche
    Xu, Chenyu
    Zhou, Kewei
    Wang, Zhihua
    Zhou, Junhu
    Cen, Kefa
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2215 - 2221
  • [6] Particle model investigation for the thermochemical steps of the sulfur-ammonia water splitting cycle
    Kalyva, A. E.
    Vagia, E. Ch.
    Konstandopoulos, A. G.
    Srinivasa, A. R.
    T-Raissi, A.
    Muradov, N.
    Kakosimos, K. E.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (06) : 3621 - 3629
  • [7] LSPR enhanced photo-thermochemical cycle for water splitting
    Zheng, Xiangsheng
    Li, Zheng
    Zhang, Zunheng
    Wu, Qiliang
    Fan, Haidong
    Zhang, Yanwei
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (03): : 61 - 66
  • [8] Status of the solar sulfur ammonia thermochemical hydrogen production system for splitting water
    Taylor, R.
    Davenport, R.
    Talbot, J.
    Herz, R.
    Luc, W.
    Genders, D.
    Symons, P.
    Brown, L.
    [J]. PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 2047 - 2058
  • [9] PRODUCTION OF SOLAR HYDROGEN BY A NOVEL, 2-STEP, WATER-SPLITTING THERMOCHEMICAL CYCLE
    TAMAURA, Y
    STEINFELD, A
    KUHN, P
    EHRENSBERGER, K
    [J]. ENERGY, 1995, 20 (04) : 325 - 330
  • [10] Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
    Boretti, Alberto
    Nayfeh, Jamal
    Al-Maaitah, Ayman
    [J]. FRONTIERS IN ENERGY RESEARCH, 2021, 9