A Novel Random Effect Model for GWAS Meta-Analysis and Its Application to Trans-Ethnic Meta-Analysis

被引:13
|
作者
Shi, Jingchunzi [1 ]
Lee, Seunggeun [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
Effect-size heterogeneity; GWAS; Kernel regression; Meta-analysis; Random effect model; Trans-ethnic meta-analysis; GENOME-WIDE ASSOCIATION; SEQUENCING ASSOCIATION; MIXED MODELS;
D O I
10.1111/biom.12481
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meta-analysis of trans-ethnic genome-wide association studies (GWAS) has proven to be a practical and profitable approach for identifying loci that contribute to the risk of complex diseases. However, the expected genetic effect heterogeneity cannot easily be accommodated through existing fixed-effects and random-effects methods. In response, we propose a novel random effect model for trans-ethnic meta-analysis with flexible modeling of the expected genetic effect heterogeneity across diverse populations. Specifically, we adopt a modified random effect model from the kernel regression framework, in which genetic effect coefficients are random variables whose correlation structure reflects the genetic distances across ancestry groups. In addition, we use the adaptive variance component test to achieve robust power regardless of the degree of genetic effect heterogeneity. Simulation studies show that our proposed method has well-calibrated type I error rates at very stringent significance levels and can improve power over the traditional meta-analysis methods. We reanalyzed the published type 2 diabetes GWAS meta-analysis (Consortium et al., 2014) and successfully identified one additional SNP that clearly exhibits genetic effect heterogeneity across different ancestry groups. Furthermore, our proposed method provides scalable computing time for genome-wide datasets, in which an analysis of one million SNPs would require less than 3 hours.
引用
下载
收藏
页码:945 / 954
页数:10
相关论文
共 50 条
  • [1] Random Glucose GWAS Trans-ethnic Meta-analysis Provides Insights into Diabetes Pathophysiology, Complications, and Treatment Stratification
    Lagou, Vasiliki
    Jiang, Longda
    Zudina, Liudmila
    Balkhiyarova, Zhanna
    Maina, Jared
    Demirkan, Ayse
    Kaakinen, Marika A.
    Jones, Ben
    Prokopenko, Inga
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 504 - 504
  • [2] Apolipoprotein E and Intracerebral Hemorrhage: A Trans-Ethnic Meta-Analysis
    Marini, Sandro
    Morotti, Andrea
    Pezzini, Alessandro
    Moomaw, Charles J.
    Flaherty, Matthew L.
    Montaner, Joan
    Jimenez-Conde, Jordi
    Cuadrado-Godia, Elisa
    Slowik, Agnieszka
    Pichler, Alexander
    Tirschwell, David L.
    Selim, Magdy
    Brown, Devin L.
    Silliman, Scott L.
    Worrall, Bradford B.
    Meschia, James F.
    Kidwell, Chelsea S.
    Testai, Fernando D.
    Kittner, Steven J.
    Deary, Ian J.
    Al-Shahi, Salman Rusta
    Sudlow, Catherine L.
    Klijn, Catharina J.
    Fernandez-Cadenas, Israel
    Lindgren, Arne
    Goldstein, Joshua N.
    Viswanathan, Anand
    Greenberg, Steven M.
    Falcone, Guido J.
    Langefeld, Carl D.
    Woo, Daniel
    Rosand, Jonathan
    Anderson, Christopher
    STROKE, 2019, 50
  • [3] Trans-ethnic meta-analysis of white blood cell phenotypes
    Keller, Margaux F.
    Reiner, Alexander P.
    Okada, Yukinori
    van Rooij, Frank J. A.
    Johnson, Andrew D.
    Chen, Ming-Huei
    Smith, Albert V.
    Morris, Andrew P.
    Tanaka, Toshiko
    Ferrucci, Luigi
    Zonderman, Alan B.
    Lettre, Guillaume
    Harris, Tamara
    Garcia, Melissa
    Bandinelli, Stefania
    Qayyum, Rehan
    Yanek, Lisa R.
    Becker, Diane M.
    Becker, Lewis C.
    Kooperberg, Charles
    Keating, Brendan
    Reis, Jared
    Tang, Hua
    Boerwinkle, Eric
    Kamatani, Yoichiro
    Matsuda, Koichi
    Kamatani, Naoyuki
    Nakamura, Yusuke
    Kubo, Michiaki
    Liu, Simin
    Dehghan, Abbas
    Felix, Janine F.
    Hofman, Albert
    Uitterlinden, Andre G.
    van Duijn, Cornelia M.
    Franco, Oscar H.
    Longo, Dan L.
    Singleton, Andrew B.
    Psaty, Bruce M.
    Evans, Michelle K.
    Cupples, L. Adrienne
    Rotter, Jerome I.
    O'Donnell, Christopher J.
    Takahashi, Atsushi
    Wilson, James G.
    Ganesh, Santhi K.
    Nalls, Mike A.
    HUMAN MOLECULAR GENETICS, 2014, 23 (25) : 6944 - 6960
  • [4] Trans-ethnic meta-analysis of metabolic syndrome in a multi-ethnic study
    Willems, Emileigh L.
    Wan, Jia Y.
    Norden-Krichmar, Trina M.
    Edwards, Karen L.
    Santorico, Stephanie A.
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 741 - 742
  • [5] Trans-ethnic meta-analysis of rare variants in sequencing association studies
    Shi, Jingchunzi
    Boehnke, Michael
    Lee, Seunggeun
    BIOSTATISTICS, 2021, 22 (04) : 706 - 722
  • [6] Trans-ethnic meta-analysis meta-analysis of gestational diabetes reveals shared genetic background with type 2 diabetes
    Pervjakova, N.
    Cook, J. P.
    Morris, A. P.
    Ferreira, T.
    Magi, R.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1189 - 1189
  • [7] Identification of novel gout loci from trans-ethnic meta-analysis of serum urate level
    Yusuke Kawamura
    Akiyoshi Nakayama
    Masahiro Nakatochi
    Yuka Aoki
    Yu Toyoda
    Takahiro Nakamura
    Seiko Shimizu
    Keitaro Matsuo
    Nariyoshi Shinomiya
    Hirotaka Matsuo
    Human Cell, 38 (1)
  • [8] A trans-ethnic meta-analysis identified additional novel genomic loci associated with cervical cancer
    Kamiza, Abram Bunya
    Brandenburg, Jean-Tristan
    Ramsay, Michele
    Mathew, Christopher
    CANCER RESEARCH, 2023, 84 (06)
  • [9] Random glucose GWAS trans-ethnic meta-analysis in almost half a million individuals provides insights into diabetes pathophysiology, complications and treatment stratification
    Lagou, Vasiliki
    Jiang, Longda
    Ulrich, Anna
    Zudina, Liudmila
    Balkhiyarova, Zhanna
    Faggian, Alessia
    Maina, Jared
    Deganutti, Giuseppe
    Demirkan, Ayse
    Reynolds, Christopher
    Kaakinen, Marika
    Jones, Ben
    Prokopenko, Inga
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 43 - 44
  • [10] Trans-ethnic meta-analysis reveals novel loci and effector genes for kidney function in diverse populations
    Mahajan, Anubha
    Haessler, Jeffrey
    Okada, Yukinori
    Stilp, Adrienne
    Whitfield, John
    Laurie, Cathy
    Franceschini, Nora
    Morris, Andrew P.
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 567 - 567