ENHANCED SYNCHRONIZATION RANGE FROM NON-LINEAR MICROMECHANICAL OSCILLATORS

被引:0
|
作者
Czaplewski, D. A. [1 ]
Antonio, D. [1 ]
Guest, J. R. [1 ]
Lopez, D. [1 ]
Arroyo, S. I. [2 ,3 ]
Zanette, D. H. [2 ,3 ]
机构
[1] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
[3] Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina
关键词
Synchronization; Duffing nonlinearity; non-linear; oscillator; resonator; self-sustained; MEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we report that the synchronization range of micro-oscillators increases with increasing drive force when operating the oscillators in the non-linear regime. This enhancement is contrary to the same observation for oscillators operating in the linear regime where the synchronization range decreases with increasing drive force. This creates the ability to synchronize multiple oscillators operating in the non-linear regime across a greater frequency range to accommodate larger frequency deviations between devices caused by fabrication variances. We have observed the increased synchronization range in both mechanical hardening and electrostatic softening non-linear micro-oscillators.
引用
收藏
页码:2001 / 2004
页数:4
相关论文
共 50 条
  • [1] COLLECTIVE SYNCHRONIZATION IN LATTICES OF NON-LINEAR OSCILLATORS WITH RANDOMNESS
    STROGATZ, SH
    MIROLLO, RE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (13): : L699 - L705
  • [2] Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
    Minati, Ludovico
    CHAOS, 2015, 25 (12)
  • [3] Activation barrier scaling for fluctuation induced switching in driven non-linear micromechanical oscillators
    Chan, H. B.
    Stambaugh, C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [4] Quadratic non-linear oscillators
    Mickens, RE
    JOURNAL OF SOUND AND VIBRATION, 2004, 270 (1-2) : 427 - 432
  • [6] PERIODS OF NON-LINEAR OSCILLATORS
    CHEN, TW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 54 - 54
  • [7] Melnikov's method for non-linear oscillators with non-linear excitations
    Garcia-Margallo, J
    Bejarano, JD
    JOURNAL OF SOUND AND VIBRATION, 1998, 212 (02) : 311 - 319
  • [8] Synchronization of Micromechanical Oscillators Using Light
    Zhang, Mian
    Wiederhecker, Gustavo S.
    Manipatruni, Sasikanth
    Barnard, Arthur
    McEuen, Paul
    Lipson, Michal
    PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [9] Synchronization of Micromechanical Oscillators Using Light
    Zhang, M.
    Wiederhecker, G. S.
    Manipatruni, S.
    Barnard, A. W.
    McEuen, P.
    Lipson, M.
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011,
  • [10] THE UNIVERSAL EVOLUTION CRITERION BY PRIGOGINE AND GLANSDORFF IN THE SELF-SYNCHRONIZATION OF NON-LINEAR OSCILLATORS
    SHIMIZU, H
    YAMAGUCHI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (01): : 345 - 348