Consistent estimation of linear panel data models with measurement error

被引:11
|
作者
Meijer, Erik [1 ]
Spierdijk, Laura [2 ]
Wansbeek, Tom [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA USA
[2] Univ Groningen, Groningen, Netherlands
关键词
Measurement error; Panel data; Third moments; Heteroskedasticity; GMM; INSTRUMENTAL VARIABLE ESTIMATION; GENERALIZED-METHOD; GMM ESTIMATION; REGRESSION-COEFFICIENTS; EFFICIENT ESTIMATION; MOMENT ESTIMATORS; SAMPLE PROPERTIES; IN-VARIABLES; SELECTION; BIAS;
D O I
10.1016/j.jeconom.2017.06.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
Measurement error causes a bias towards zero when estimating a panel data linear regression model. The panel data context offers various opportunities to derive instrumental variables allowing for consistent estimation. We consider three sources of moment conditions: (i) restrictions on the covariance matrix of the errors in the equations, (ii) nonzero third moments of the regressors, and (iii) heteroskedasticity and nonlinearity in the relation between the error-ridden regressor and another, error-free, regressor. In simulations, these approaches appear to work well. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条