Symmetry and Its Role in Oscillation of Solutions of Third-Order Differential Equations

被引:4
|
作者
Kumar, M. Sathish [1 ]
Bazighifan, Omar [2 ,3 ]
Al-Shaqsi, Khalifa [4 ]
Wannalookkhee, Fongchan [5 ]
Nonlaopon, Kamsing [5 ]
机构
[1] Paavai Engn Coll Autonomous, Dept Math, Namakkal 637018, India
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Hadhramout Univ, Dept Math, Fac Sci, Hadhramout 50512, Yemen
[4] Univ Technol & Appl Sci, Nizwa Coll Technol, Dept Informat Technol, PO Box 75, Kyoto 612, Japan
[5] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 08期
关键词
neutral differential equation; oscillation; Riccati substitution; deviating arguments; ASYMPTOTIC-BEHAVIOR;
D O I
10.3390/sym13081485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Symmetry plays an essential role in determining the correct methods for the oscillatory properties of solutions to differential equations. This paper examines some new oscillation criteria for unbounded solutions of third-order neutral differential equations of the form (r(2)(zeta)((r(1)(zeta)(z '(zeta))(beta 1))')(beta 2))' + Sigma(n)(i=1)q(i)(zeta)chi(beta 3)(phi(i)(zeta))=0. New oscillation results are established by using generalized Riccati substitution, an integral average technique in the case of unbounded neutral coefficients. Examples are given to prove the significance of new theorems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Oscillation of third-order neutral differential equations
    Baculikova, B.
    Dzurina, J.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 215 - 226
  • [2] Oscillation of third-order nonlinear differential equations
    Baculikova, B.
    Dzurina, J.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 466 - 470
  • [3] OSCILLATION OF THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
    Baculikova, B.
    Dzurina, J.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (43) : 1 - 10
  • [4] OSCILLATION CRITERIA FOR THIRD-ORDER DIFFERENTIAL EQUATIONS
    JONES, GD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A665 - A665
  • [5] New Results on the Oscillation of Solutions of Third-Order Differential Equations with Multiple Delays
    Omar, Najiyah
    Moaaz, Osama
    Alnemer, Ghada
    Elabbasy, Elmetwally M.
    SYMMETRY-BASEL, 2023, 15 (10):
  • [6] More Effective Criteria for Testing the Oscillation of Solutions of Third-Order Differential Equations
    Omar, Najiyah
    Serra-Capizzano, Stefano
    Qaraad, Belgees
    Alharbi, Faizah
    Moaaz, Osama
    Elabbasy, Elmetwally M.
    AXIOMS, 2024, 13 (03)
  • [7] OSCILLATION OF SOLUTIONS TO THIRD-ORDER HALF-LINEAR NEUTRAL DIFFERENTIAL EQUATIONS
    Dzurina, Jozef
    Thandapani, Ethiraju
    Tamilvanan, Sivaraj
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [8] OSCILLATION OF THIRD-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS
    Jianli Yao
    Xiaoping Zhang
    Jiangbo Yu
    AnnalsofAppliedMathematics, 2020, 36 (04) : 416 - 425
  • [9] Oscillation of third-order nonlinear neutral differential equations
    Dosla, Z.
    Liska, P.
    APPLIED MATHEMATICS LETTERS, 2016, 56 : 42 - 48
  • [10] Oscillation of third-order differential equations with noncanonical operators
    Dzurina, Jozef
    Jadlovska, Irena
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 394 - 402