Non-redundant optical phased array

被引:34
|
作者
Fukui, Taichiro [1 ]
Tanomura, Ryota [1 ]
Komatsu, Kento [1 ]
Yamashita, Daiji [1 ]
Takahashi, Shun [1 ]
Nakano, Yoshiaki [1 ]
Tanemura, Takuo [1 ]
机构
[1] Univ Tokyo, Sch Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
来源
OPTICA | 2021年 / 8卷 / 10期
基金
日本学术振兴会;
关键词
MULTIMODE FIBER;
D O I
10.1364/OPTICA.437453
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical phased arrays (OPAs) are promising beam-steering devices for various applications such as light detection and ranging, optical projection, free-space optical communication, and optical switching. However, previously reported OPAs suffer from either an insufficient number of resolvable points, or complicated control requirements due to an extremely large number of phase shifters. To solve this issue, we introduce the non-redundant array (NRA) concept to the OPA devices. Based on this design, we can realize high-resolution OPAs whose number of resolvable points scales quadratically with the number of antennas N. In contrast, that of traditional OPAs scales only linearly with N. Thus, a significant reduction in the number of required phase shifters can be attained without sacrificing the number of resolvable points. We first investigate the impact of employing the NRA theoretically by considering the autocorrelation function of the array layout. We then develop a Costas-array-based silicon OPA and experimentally demonstrate 2D beam steering with similar to 19,000 resolvable points using only 127 phase shifters. To the best of our knowledge, this corresponds to the largest number of resolvable points achieved by an OPA without sweeping the wavelength. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1350 / 1358
页数:9
相关论文
共 50 条
  • [1] Non-redundant optical phased array (vol 8, pg 1350, 2021)
    Fukui, Taichiro
    Tanomura, Ryota
    Komatsu, Kento
    Yamashita, Daiji
    Takahashi, Shun
    Nakano, Yoshiaki
    Tanemura, Takuo
    [J]. OPTICA, 2022, 9 (02): : 159 - 159
  • [2] OPTICAL ANALOG OF A NON-REDUNDANT ARRAY
    GORI, F
    GUATTARI, G
    [J]. PHYSICS LETTERS A, 1970, A 32 (07) : 446 - &
  • [3] Generalized Non-Redundant Sparse Array Designs
    Ahmed, Ammar
    Zhang, Yimin D.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4580 - 4594
  • [4] Non-Redundant Sparse Array with Flexible Aperture
    Ahmed, Ammar
    Zhang, Yimin D.
    [J]. 2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 225 - 229
  • [5] Non-redundant array configurations for optical interferometric systems combined with a large telescope
    Huang, Siyu
    Guo, Youming
    Rao, Changhui
    [J]. OPTIK, 2019, 178 : 343 - 350
  • [6] Gridless DOA estimation for non-redundant array at low SNR
    Wang N.
    Lyu X.
    Li M.
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (02): : 352 - 359
  • [7] DIGITAL DECONVOLUTION OF A CODED IMAGE OBTAINED WITH A NON-REDUNDANT PINHOLE ARRAY
    HAN, KS
    BERZINS, GJ
    MASON, DS
    LANGNER, DG
    [J]. APPLIED OPTICS, 1977, 16 (05) : 1260 - 1262
  • [8] Non-redundant data clustering
    Gondek, D
    Hofmann, T
    [J]. FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 75 - 82
  • [9] Non-redundant data clustering
    Gondek, David
    Hofmann, Thomas
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 12 (01) : 1 - 24
  • [10] Non-redundant data clustering
    David Gondek
    Thomas Hofmann
    [J]. Knowledge and Information Systems, 2007, 12 : 1 - 24