Deep Learning Framework with Confused Sub-Set Resolution Architecture for Automatic Arabic Diacritization

被引:29
|
作者
Rashwan, Mohsen A. A. [1 ,2 ]
Al Sallab, Ahmad A. [3 ,4 ]
Raafat, Hazem M. [5 ]
Rafea, Ahmed [6 ]
机构
[1] Engn Co Dev Comp Syst RDI, Giza 12613, Egypt
[2] Cairo Univ, Fac Engn, Dept Elect & Elect Commun, Giza 00202, Egypt
[3] Valeo Interbranch Automot Software, Giza, Egypt
[4] Cairo Univ, Fac Engn, Dept Elect & Elect Commun, Giza 12613, Egypt
[5] Kuwait Univ, Dept Comp Sci, Safat 13060, Kuwait
[6] Amer Univ Cairo, Dept Comp Sci, Cairo 11835, Egypt
关键词
Arabic diacritization; classifier design; deep networks; part-of-speech (PoS) tagging;
D O I
10.1109/TASLP.2015.2395255
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Arabic language belongs to a group of languages that require diacritization over their characters. Modern Standard Arabic (MSA) transcripts omit the diacritics, which are essential for many machine learning tasks like Text-To-Speech (TTS) systems. In this work Arabic diacritics restoration is tackled under a deep learning framework that includes the Confused Sub-set Resolution (CSR) method to improve the classification accuracy, in addition to an Arabic Part-of-Speech (PoS) tagging framework using deep neural nets. Special focus is given to syntactic diacritization, which still suffers low accuracy as indicated in prior works. Evaluation is done versus state-of-the-art systems reported in literature, with quite challenging datasets collected from different domains. Standard datasets like the LDC Arabic Tree Bank are used in addition to custom ones we have made available online to allow other researchers to replicate these results. Results show significant improvement of the proposed techniques over other approaches, reducing the syntactic classification error to 9.9% and morphological classification error to 3% compared to 12.7% and 3.8% of the best reported results in literature, improving the error by 22% over the best reported systems.
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条