Development and Validation of Various Phenotyping Algorithms for Diabetes Mellitus Using Data from Electronic Health Records

被引:2
|
作者
Esteban, Santiago [1 ]
Rodriguez Tablado, Manuel [1 ]
Peper, Francisco [1 ]
Mahumud, Yamila S. [1 ]
Ricci, Ricardo I. [1 ]
Kopitowski, Karin [1 ]
Terrasa, Sergio [1 ]
机构
[1] Hosp Italiano Buenos Aires, Family & Community Med Div, Buenos Aires, DF, Argentina
关键词
Diabetes Mellitus; Algorithms; Precision Medicine; MEDICAL-RECORD;
D O I
10.3233/978-1-61499-830-3-366
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Precision medicine requires extremely large samples. Electronic health records (EHR) are thought to be a cost-effective source of data for that purpose. Phenotyping algorithms help reduce classification errors, making EHR a more reliable source of information for research. Four algorithm development strategies for classifring patients according to their diabetes status (diabetics; non-diabetics; inconclusive) were tested (one codes-only algorithm; one boolean algorithm, four statistical learning algorithms and six stacked generalization meta-learners). The best performing algorithms within each strategy were tested on the validation set. The stacked generalization algorithm yielded the highest Kappa coefficient value in the validation set (0.95 95% CI 0.91, 0.98). The implementation of these algorithms allows for the exploitation of data from thousands of patients accurately, greatly reducing the costs of contructing retrospective cohorts for research.
引用
收藏
页码:366 / 369
页数:4
相关论文
共 50 条
  • [1] Development and validation of various phenotyping algorithms for Diabetes Mellitus using data from electronic health records
    Esteban, Santiago
    Rodriguez Tablado, Manuel
    Peper, Francisco E.
    Mahumud, Yamila S.
    Ricci, Ricardo I.
    Kopitowski, Karin S.
    Terrasa, Sergio A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 : 53 - 70
  • [2] Validation of Phenotyping Algorithms for Stroke From Electronic Health Records Using Natural Language Processing
    Zhao, Yiqing
    Fu, Suyang
    Larson, Nicholas B.
    Decker, Paul A.
    Chamberlain, Alanna M.
    Roger, Veronique L.
    Liu, Hongfang
    Bielinski, Suzette J.
    [J]. CIRCULATION, 2019, 139
  • [3] Development and validation of algorithms to classify type 1 and 2 diabetes according to age at diagnosis using electronic health records
    Ke, Calvin
    Stukel, Therese A.
    Luk, Andrea
    Shah, Baiju R.
    Jha, Prabhat
    Lau, Eric
    Ma, Ronald C. W.
    So, Wing-Yee
    Kong, Alice P.
    Chow, Elaine
    Chan, Juliana C. N.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [4] Development and validation of algorithms to classify type 1 and 2 diabetes according to age at diagnosis using electronic health records
    Calvin Ke
    Thérèse A. Stukel
    Andrea Luk
    Baiju R. Shah
    Prabhat Jha
    Eric Lau
    Ronald C. W. Ma
    Wing-Yee So
    Alice P. Kong
    Elaine Chow
    Juliana C. N. Chan
    [J]. BMC Medical Research Methodology, 20
  • [5] PHENOTYPING ST-ELEVATION MYOCARDIAL INFARCTION FROM ELECTRONIC HEALTH RECORDS: DEVELOPMENT AND VALIDATION OF TECHNIQUES
    Somani, Sulaiman
    Teng, Shelly
    Yoffie, Stephen
    Zhao, Shan
    Glicksberg, Benjamin
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 195 - 195
  • [6] Development and application of pharmacological statin-associated muscle symptoms phenotyping algorithms using structured and unstructured electronic health records data
    Sun, Boguang
    Yew, Pui Ying
    Chi, Chih-Lin
    Song, Meijia
    Loth, Matt
    Zhang, Rui
    Straka, Robert J.
    [J]. JAMIA OPEN, 2023, 6 (04)
  • [7] Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
    Chia-Yen Chen
    Phil H. Lee
    Victor M. Castro
    Jessica Minnier
    Alexander W. Charney
    Eli A. Stahl
    Douglas M. Ruderfer
    Shawn N. Murphy
    Vivian Gainer
    Tianxi Cai
    Ian Jones
    Carlos N. Pato
    Michele T. Pato
    Mikael Landén
    Pamela Sklar
    Roy H. Perlis
    Jordan W. Smoller
    [J]. Translational Psychiatry, 8
  • [8] Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
    Chen, Chia-Yen
    Lee, Phil H.
    Castro, Victor M.
    Minnier, Jessica
    Charney, Alexander W.
    Stahl, Eli A.
    Ruderfer, Douglas M.
    Murphy, Shawn N.
    Gainer, Vivian
    Cai, Tianxi
    Jones, Ian
    Pato, Carlos N.
    Pato, Michele T.
    Landen, Mikael
    Sklar, Pamela
    Perlis, Roy H.
    Smoller, Jordan W.
    [J]. TRANSLATIONAL PSYCHIATRY, 2018, 8
  • [9] Applying active learning to high-throughput phenotyping algorithms for electronic health records data
    Chen, Yukun
    Carroll, Robert J.
    Hinz, Eugenia R. McPeek
    Shah, Anushi
    Eyler, Anne E.
    Denny, Joshua C.
    Xu, Hua
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (E2) : E253 - E259
  • [10] GENETIC VALIDATION OF BIPOLAR DISORDER IDENTIFIED BY AUTOMATED PHENOTYPING USING ELECTRONIC HEALTH RECORDS
    Chen, Chia-Yen
    Lee, Phil
    Castro, Victor
    Minnier, Jessica
    Murphy, Shawn
    Gainer, Vivian
    Cai, Tianxi
    Sklar, Pamela
    Perlis, Roy
    Smoller, Jordan
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S968 - S969