ON THE RATES OF CONVERGENCE OF SIMULATION-BASED OPTIMIZATION ALGORITHMS FOR OPTIMAL STOPPING PROBLEMS

被引:11
|
作者
Belomestny, Denis [1 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2011年 / 21卷 / 01期
关键词
Optimal stopping; simulation-based algorithms; exponential inequalities; empirical processes; delta-entropy with bracketing; AMERICAN OPTIONS; VALUATION;
D O I
10.1214/10-AAP692
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study simulation-based optimization algorithms for solving discrete time optimal stopping problems. Using large deviation theory for the increments of empirical processes, we derive optimal convergence rates for the value function estimate and show that they cannot be improved in general. The rates derived provide a guide to the choice of the number of simulated paths needed in optimization step, which is crucial for the good performance of any simulation-based optimization algorithm. Finally, we present a numerical example of solving optimal stopping problem arising in finance that illustrates our theoretical findings.
引用
收藏
页码:215 / 239
页数:25
相关论文
共 50 条
  • [1] Algorithms for Simulation-Based Optimization Problems
    Back, Thomas
    [J]. 32ND EUROPEAN CONFERENCE ON MODELLING AND SIMULATION (ECMS 2018), 2018, : 5 - 7
  • [2] Efficient simulation-based optimization for optimal reliability problems
    Taflanidis, A. A.
    Beck, J. L.
    [J]. APPLICATIONS OF STATISICS AND PROBABILITY IN CIVIL ENGINEERING, 2007, : 293 - 294
  • [3] Stopping criterion for a simulation-based optimization method
    Olafsson, S
    Shi, LY
    [J]. 1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 743 - 750
  • [4] Simulation-Based Algorithms for the Optimization of Sensor Deployment
    Kenne, Yannick
    Le Gland, Francois
    Musso, Christian
    Paris, Sebastien
    Glemarec, Yannick
    Vasta, Emile
    [J]. MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015 - PT II, 2015, 360 : 261 - 272
  • [5] Simulation-based Test Functions for Optimization Algorithms
    Zaefferer, Martin
    Fischbach, Andreas
    Naujoks, Boris
    Bartz-Beielstein, Thomas
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 905 - 912
  • [6] Randomized Optimal Stopping Algorithms and Their Convergence Analysis
    Bayer, Christian
    Belomestny, Denis
    Hager, Paul
    Pigato, Paolo
    Schoenmakers, John
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2021, 12 (03): : 1201 - 1225
  • [7] Hybrid Optimization Schemes for Simulation-Based Problems
    Gray, G. A.
    Fowler, K.
    Griffin, J. D.
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1343 - 1351
  • [8] Robust Optimization for Unconstrained Simulation-Based Problems
    Bertsimas, Dimitris
    Nohadani, Omid
    Teo, Kwong Meng
    [J]. OPERATIONS RESEARCH, 2010, 58 (01) : 161 - 178
  • [9] Rate of convergence for certain optimal stopping problems
    Klesov, Andriy
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (3-4): : 317 - 328
  • [10] Investigation of modified heuristic algorithms for simulation-based optimization
    Klemmt, Andreas
    Horn, Sven
    Beier, Eik
    Weigert, Gerald
    [J]. 2007 30TH INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY, 2007, : 24 - 29