Limit relations for the complex zeros of Laguerre and q-Laguerre polynomials

被引:5
|
作者
DeFazio, Mark V.
Gupta, Dharma P.
Muldoon, Martin E. [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[2] Algoma Univ Coll, Sault Ste Marie, ON P6A 2G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Laguerre polynomials; q-Laguerre polynomials; zeros; Jacobi polynomials;
D O I
10.1016/j.jmaa.2007.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each m (= 1, ..., n) the nth Laguerre polynomial L-n((alpha)) (x) has an m-fold zero at the origin when alpha = -m. As the real variable alpha --> -m, it has m simple complex zeros which approach 0 in a symmetric way. This symmetry leads to a finite value for the limit of the sum of the reciprocals of these zeros. There is a similar property for the zeros of the q-Laguerre polynomials and of the Jacobi polynomials and similar results hold for sums of other negative integer powers. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:977 / 982
页数:6
相关论文
共 50 条